Abstract

This paper examines the use of Gauss-Laguerre beams in STED microscopy. These types of beams are shown to have beneficial properties that can be utilised to generate stable, high quality STED beams resulting in an aberration-resilient generation volume. In this paper we obtain general expressions for Gauss-Laguerre beams being focused through a stratified medium and describe their optimization for STED microscopy purposes. Our results show that the circularly polarised, lowest order �??dark�?? beam is the most beneficial for STED purposes.

© 2004 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. S. Hell and J.Wichmann, �??Breaking the diffraction resolution limit by stimulated emission: stimulated-emissiondepletion fluorescence microscopy,�?? Opt. Lett. 19, 780�??782 (1994).
  2. T. A. Klar and S. Hell, �??Subdiffraction resolution in far-field fluorescence microscopy,�?? Opt. Lett. 24, 954�??6 (1999).
  3. T. A. Klar, E. Engel, and S. Hell, �??Breaking Abbe�??s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,�?? Phys. Rev. E 64, 066613 (2001).
    [CrossRef]
  4. S. Hell, �??Toward fluorescence nanoscopy,�?? Nature Biotech. 21, 1347�??1355 (2003).
    [CrossRef]
  5. R. Piestun, Y. Schechner, and J. Shamir, �??Propagation-Invariant Wave Fields with Finite Energy,�?? J. Opt. Soc. Am. A 17, 294�??303 (2000).
  6. C. Paterson and R. Smith, �??Helicon waves: propagation-invariant waves in a rotating coordinate system,�?? Opt. Commun. 124, 131�??140 (1996).
    [CrossRef]
  7. S. N. Khonina, V. Kotlyar, V. Soifer, J. Honkanen, M. Lautanen, and T. J., �??Generation of rotating Gauss-Laguerre modes with binary-phase diffractive optics,�?? J. Mod. Opt. 46, 227�??238 (1999).
  8. B. Richards and E. Wolf, �??Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,�?? Proc. Roy. Soc. (London) A 253, 358�??379 (1959).
  9. R. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley and Los Angeles, 1966).
  10. P. Torok, P. Higdon, and T. Wilson, �??On the general properties of polarising conventional and confocal microscopes,�?? Opt. Commun. 148, 300�??315 (1998).
    [CrossRef]
  11. P. Torok and P. Varga, �??Electromagnetic diffraction of light focused through a stratified medium,�?? Appl. Opt. 36, 2305�??2312 (1997).
  12. P. Torok and F.-J. Kao, �??Point-Spread Function Reconstruction in High Aperture Lenses Focusing Ultra-Short Laser Pulses,�?? Opt. Comunm. 213, 97�??102 (2002).
  13. M. Dyba, T. Klar, S. Jakobs, and S. Hell, �??Ultrafast dynamics microscopy,�?? Appl. Phys. Lett. 77, 597�??599 (2000).
    [CrossRef]
  14. M. Padgett, L. Allen, �??The Poynting vector in Laguerre-Gaussian laser modes,�?? Opt. Commun. 121, 36�??40 (1995).
    [CrossRef]
  15. M. Dyba, S.W. Hell, �??Focal spots of size ë/23 open up far-field fluorescence microscopy at 33 nm axial resolution,�?? Phys. Rev. Lett. 88, 163901 (2002).
    [CrossRef]
  16. S. Lindek, N. Salmon, C. Cremer, and E. H. K. Stelzer, �??Theta microscopy allows phase regulation in 4Pi(A)-confocal two-photon fluorescence microscopy,�?? Optik 98, 15�??20 (1994).
  17. O. Haeberl´e, C. Xu, A. Dieterlen, and S. Jacquey, �??Multiple-objective microscopy with three-dimensional resolution near 100 nm and a long working distance,�?? Opt. Lett. 26, 1684�??1686 (2001).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Dyba, T. Klar, S. Jakobs, and S. Hell, �??Ultrafast dynamics microscopy,�?? Appl. Phys. Lett. 77, 597�??599 (2000).
[CrossRef]

J. Mod. Opt. (1)

S. N. Khonina, V. Kotlyar, V. Soifer, J. Honkanen, M. Lautanen, and T. J., �??Generation of rotating Gauss-Laguerre modes with binary-phase diffractive optics,�?? J. Mod. Opt. 46, 227�??238 (1999).

J. Opt. Soc. Am. A (1)

Nature Biotech. (1)

S. Hell, �??Toward fluorescence nanoscopy,�?? Nature Biotech. 21, 1347�??1355 (2003).
[CrossRef]

Opt. Commun. (3)

C. Paterson and R. Smith, �??Helicon waves: propagation-invariant waves in a rotating coordinate system,�?? Opt. Commun. 124, 131�??140 (1996).
[CrossRef]

M. Padgett, L. Allen, �??The Poynting vector in Laguerre-Gaussian laser modes,�?? Opt. Commun. 121, 36�??40 (1995).
[CrossRef]

P. Torok, P. Higdon, and T. Wilson, �??On the general properties of polarising conventional and confocal microscopes,�?? Opt. Commun. 148, 300�??315 (1998).
[CrossRef]

Opt. Comunm. (1)

P. Torok and F.-J. Kao, �??Point-Spread Function Reconstruction in High Aperture Lenses Focusing Ultra-Short Laser Pulses,�?? Opt. Comunm. 213, 97�??102 (2002).

Opt. Lett. (3)

Optik (1)

S. Lindek, N. Salmon, C. Cremer, and E. H. K. Stelzer, �??Theta microscopy allows phase regulation in 4Pi(A)-confocal two-photon fluorescence microscopy,�?? Optik 98, 15�??20 (1994).

Phys. Rev. E (1)

T. A. Klar, E. Engel, and S. Hell, �??Breaking Abbe�??s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,�?? Phys. Rev. E 64, 066613 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

M. Dyba, S.W. Hell, �??Focal spots of size ë/23 open up far-field fluorescence microscopy at 33 nm axial resolution,�?? Phys. Rev. Lett. 88, 163901 (2002).
[CrossRef]

Proc. Roy. Soc. A (1)

B. Richards and E. Wolf, �??Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,�?? Proc. Roy. Soc. (London) A 253, 358�??379 (1959).

Other (1)

R. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley and Los Angeles, 1966).

Supplementary Material (4)

» Media 1: GIF (561 KB)     
» Media 2: MPG (100 KB)     
» Media 3: MPG (93 KB)     
» Media 4: MPG (98 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics