Abstract

Experiments on a high-power end-pumped Nd:YAG rod laser with an efficient birefringence compensation will be presented. A linearly polarized output power of 114 W with an M2-value of 1.05 was realized. Furthermore, the from our best knowledge highest injection-locked single-frequency output power of 87 W in a nearly diffraction-limited beam was demonstrated.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. LIGO II Conceptual Project Book; LIGO M990288-A-M (1999).
  2. Advanced LIGO homepage: <a href="http://www.ligo.caltech.edu/advLIGO/">http://www.ligo.caltech.edu/advLIGO/</a>.
  3. S. Knoke, �??Einfrequenzbetrieb von diodengepumpten Nd:YAG-Hochleistungslasern in Stab- und Slabgeometrie,�?? PhD. Thesis UNI Hannover (1998).
  4. M. P. Murdough and C.A. Denmann, �??Mode-volume and pump-power limitations in injection locked TEM00 Nd:YAG rod lasers,�?? Appl. Opt. 35, 5925-5236 (1996).
    [CrossRef]
  5. W. Keochner, Solid-State Laser Engeneering, 5th ed. (Springer-Verlag, New York, 1996).
  6. N. Kugler, �??Doppelbrechungskompensierte und doppelbrechungsfreie Hochleistungslaser,�?? PhD Thesis Berlin (2000).
  7. Eric D. Black, �??An introduction to Pound-Drever-Hall laser freqeuncy stabilization,�?? Am. J. Phys. 69, 79-87 (2001).
    [CrossRef]
  8. T.J Kane et al., �??Monolithic, unidirectional single-mode Nd:YAG ring laser,�?? Opt. Lett. 10, 65-67 (1985).
    [CrossRef] [PubMed]
  9. I. Zawischa et al., �??The GEO 600 laser system,�?? Class. Quantum Grav. 19, 1775-1781 (2002).
    [CrossRef]
  10. Jan Sulc et al., �??Comparison of different composite Nd:YAG rods thermal properties under diode pumping,�?? SPIE-Int. Soc. Opt. Eng. 4630, 128-134 (2002).
  11. M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, �??Analytical and Experimental Studies on the Characteristics of Composite Solid-State Laser Rods in Diode-End-Pumped Geometry,�?? IEEE J. Sel. Top. Quantum Electron. 3, 9-18 (1997).
    [CrossRef]
  12. S.C. Tidwell, et al., �??Scaling CW Diode-End-Pumped Nd:YAG Lasers to High Average Powers,�?? IEEE J. Quantum Electron. 28, 997-1009 (1992).
    [CrossRef]
  13. J. Song, A. P. Liu, K. Okino and K. Ueda, �??Control of the thermal lensing effect with different pump light distributions,�?? Appl. Opt. 36, 8051-8055 (1997).
    [CrossRef]
  14. Yung-Fu Chen, �??Pump-to-mode size ratio dependence of thermal loading in diode-end-pumped solid-state lasers,�?? J. Opt. Soc. Am. B 17, 1835-1840 (2000).
    [CrossRef]

Am. J. Phys. (1)

Eric D. Black, �??An introduction to Pound-Drever-Hall laser freqeuncy stabilization,�?? Am. J. Phys. 69, 79-87 (2001).
[CrossRef]

Appl. Opt. (2)

Class. Quantum Grav. (1)

I. Zawischa et al., �??The GEO 600 laser system,�?? Class. Quantum Grav. 19, 1775-1781 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

S.C. Tidwell, et al., �??Scaling CW Diode-End-Pumped Nd:YAG Lasers to High Average Powers,�?? IEEE J. Quantum Electron. 28, 997-1009 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, �??Analytical and Experimental Studies on the Characteristics of Composite Solid-State Laser Rods in Diode-End-Pumped Geometry,�?? IEEE J. Sel. Top. Quantum Electron. 3, 9-18 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

SPIE-Int. Soc. Opt. Eng. (1)

Jan Sulc et al., �??Comparison of different composite Nd:YAG rods thermal properties under diode pumping,�?? SPIE-Int. Soc. Opt. Eng. 4630, 128-134 (2002).

Other (5)

W. Keochner, Solid-State Laser Engeneering, 5th ed. (Springer-Verlag, New York, 1996).

N. Kugler, �??Doppelbrechungskompensierte und doppelbrechungsfreie Hochleistungslaser,�?? PhD Thesis Berlin (2000).

LIGO II Conceptual Project Book; LIGO M990288-A-M (1999).

Advanced LIGO homepage: <a href="http://www.ligo.caltech.edu/advLIGO/">http://www.ligo.caltech.edu/advLIGO/</a>.

S. Knoke, �??Einfrequenzbetrieb von diodengepumpten Nd:YAG-Hochleistungslasern in Stab- und Slabgeometrie,�?? PhD. Thesis UNI Hannover (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

End-pumped laser design with pump light homogenizer and double pass of pump light absorption.

Fig. 2.
Fig. 2.

Calculated temperature distribution on the rod-axis and the length of the doped region. Compared is a 0.1 at.% double pass with a 0.2 at.% single pass configuration.

Fig. 3.
Fig. 3.

(a) Relative gain for different seed laser line widths as a function of the temperature difference along the rod axis; (b). Relative gain integrated over the propagation length on a single frequency seed laser wavelength, calculated with the above described temperature profile for single and double pass configuration.

Fig. 4.
Fig. 4.

Measurements of the fluorescence (integrated over the rod axis) without (a) and with (b) pump light homogenization.

Fig. 5.
Fig. 5.

Setup of the standing wave resonator with birefringence compensation. OC: output coupler, HR: highly reflective mirror, QR: quartz rotator.

Fig. 6.
Fig. 6.

(a) Comparison of the laser output power characteristics with and without birefringence compensation in polarized and non-polarized operation; (b). Laser stability diagram for radial, tangential polarizations and for the birefringence compensated resonator.

Fig. 7.
Fig. 7.

Injection locking setup of the triple stage design. FI: Faraday Isolator, EOM: Electro-Optical Modulator, NPRO: Non-Planar-Ring Oscillator, PD: Photodiode, λ/2: half wave plate/2, λ/4:quater wave plate/4

Metrics