Abstract

We use two perpendicular crystals of periodically-poled KTP to directly generate polarization-entangled photon pairs, the majority of which are emitted into a single Gaussian spatial mode. The signal and idler photons have wavelengths of 810 nm and 1550 nm, respectively, and the photon-pair generation rate is 1.2×107 sec-1 for a pump power of 62 mW. The apparatus is compact, flexible, and easily to use.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, �??New high-intensity source of polarization-entangled photon pairs,�?? Phys. Rev. Lett. 75, 4337 �?? 4341 (1995).
    [CrossRef] [PubMed]
  2. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaim, and P. H. Eberhard, �??Ultrabright source of polarizationentangled photons,�?? Phys. Rev. A 60, R773 �?? 776 (1999).
    [CrossRef]
  3. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, �??Highly efficient photon-pair source using periodically poled lithium niobate waveguide,�?? Electron. Lett. 37, 26 �?? 28 (2001).
    [CrossRef]
  4. K. Banaszek, A. B. U�??Ren, and I. A. Walmsley, �??Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,�?? Opt. Lett. 26, 1367 �?? 1369 (2001).
    [CrossRef]
  5. C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, �??High-flux source of polarizationentangled photons from a periodically-poled KTiOPO4 parametric down-converter,�?? Phys. Rev. A 69, 013807 (2004).
    [CrossRef]
  6. M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, �??Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,�?? Phys. Rev. A 69, 041801 (2004).
    [CrossRef]
  7. G. Ribordy, J. Brendel, J.-D. Gautier, N. Gisin, and H. Zbinden, �??Long-distance entanglement-based quantum key distribution,�?? Phys. Rev. A 63, 012309 (2001).
    [CrossRef]
  8. E. J. Mason, M. A. Albota, F. Konig, and F. N. C. Wong, �??Efficient generation of tunable photon pairs at 0.8 and 1.6 µm,�?? Opt. Lett. 27, 2115 �?? 2117 (2002).
    [CrossRef]
  9. Q. Chen and W. P. Risk, �??Periodic poling of KTiOPO4 using an applied electric field,�?? Electron. Lett. 30, 1516 �??1517 (1994).
    [CrossRef]
  10. H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, �??Frequency doubling in periodically poled RbTiOAsO4,�?? Electron. Lett. 32, 556 �?? 557 (1996).
    [CrossRef]
  11. H. Karlsson, F. Laurell, and L. K. Cheng, �??Periodic poling of RbTiOPO4 for quasi-phase matched blue light generation,�?? Appl. Phys. Lett. 74, 1519 (1999).
    [CrossRef]
  12. T.Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer, and R. S. Feigelson, �??Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO4,�?? Appl. Opt. 26, 2390 (1987).
    [CrossRef] [PubMed]
  13. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, �??Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,�?? Appl. Phys. Lett. 74, 914 �?? 916 (1999).
    [CrossRef]
  14. M. W. Sasnett, �??Propagation of multimode laser beams: The M2 factor,�?? in The Physics and Technology of Laser Resonators, D. R. Hall and P. E. Jackson. eds. (New York: Adam Hilger, 1989), pp. 132 - 142.
  15. D. Ljunggren, M. Tengner, P. Marsden, M. Pelton, and A. Karlsson, Department of Microelectronics and Information Technology, Royal Institute of Technology, Electrum 229, SE-164 40, Kista, Sweden, are preparing a manuscript to be called �??Theory and experiment of entanglement in a quasi-phasematched two-crystal source.�??
  16. M. Bourennane, A. Karlsson, J. Pena Cýscar, and M. Mathes, �??Single photon counters in the telecom wavelength region of 1550 nm for quantum information processing,�?? J. Mod. Opt. 48, 1983 �?? 1995 (2001).
  17. C. Kurtseifer, M. Oberparleiter, and H. Weinfurter, �??High-efficiency entangled photon pair collection in type-II parametric fluorscence,�?? Phys. Rev. A 64, 023802 (2001).
    [CrossRef]
  18. J. Volz, C. Kurtseifer, and H.Weinfurter, �??Compact all-solid-state source of polarization-entangled photon pairs,�?? Appl. Phys. Lett. 79, 869 �?? 871 (2001).
    [CrossRef]
  19. D. Ljunggren and M. Tengner, Department of Microelectronics and Information Technology, Royal Institute of Technology, Electrum 229, SE-164 40, Kista, Sweden, are preparing a manuscript to be called �??Entangled photon paris from two quasi-phasematched crystlas: Optimizing the emission for efficient fiber coupling.�??
  20. A. G. White, D. F. V. James, W. J. Munro, and P. G. Kwiat, �??Exploring Hilbert space: Accurate characterization of quantum information,�?? Phys. Rev. A 65, 012301 (2002).
    [CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, �??Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,�?? Appl. Phys. Lett. 74, 914 �?? 916 (1999).
[CrossRef]

J. Volz, C. Kurtseifer, and H.Weinfurter, �??Compact all-solid-state source of polarization-entangled photon pairs,�?? Appl. Phys. Lett. 79, 869 �?? 871 (2001).
[CrossRef]

H. Karlsson, F. Laurell, and L. K. Cheng, �??Periodic poling of RbTiOPO4 for quasi-phase matched blue light generation,�?? Appl. Phys. Lett. 74, 1519 (1999).
[CrossRef]

Electron. Lett.

Q. Chen and W. P. Risk, �??Periodic poling of KTiOPO4 using an applied electric field,�?? Electron. Lett. 30, 1516 �??1517 (1994).
[CrossRef]

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, �??Frequency doubling in periodically poled RbTiOAsO4,�?? Electron. Lett. 32, 556 �?? 557 (1996).
[CrossRef]

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, �??Highly efficient photon-pair source using periodically poled lithium niobate waveguide,�?? Electron. Lett. 37, 26 �?? 28 (2001).
[CrossRef]

J. Mod. Opt.

M. Bourennane, A. Karlsson, J. Pena Cýscar, and M. Mathes, �??Single photon counters in the telecom wavelength region of 1550 nm for quantum information processing,�?? J. Mod. Opt. 48, 1983 �?? 1995 (2001).

Opt. Lett.

Phys. Rev. A

C. Kurtseifer, M. Oberparleiter, and H. Weinfurter, �??High-efficiency entangled photon pair collection in type-II parametric fluorscence,�?? Phys. Rev. A 64, 023802 (2001).
[CrossRef]

A. G. White, D. F. V. James, W. J. Munro, and P. G. Kwiat, �??Exploring Hilbert space: Accurate characterization of quantum information,�?? Phys. Rev. A 65, 012301 (2002).
[CrossRef]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, �??High-flux source of polarizationentangled photons from a periodically-poled KTiOPO4 parametric down-converter,�?? Phys. Rev. A 69, 013807 (2004).
[CrossRef]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, �??Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,�?? Phys. Rev. A 69, 041801 (2004).
[CrossRef]

G. Ribordy, J. Brendel, J.-D. Gautier, N. Gisin, and H. Zbinden, �??Long-distance entanglement-based quantum key distribution,�?? Phys. Rev. A 63, 012309 (2001).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaim, and P. H. Eberhard, �??Ultrabright source of polarizationentangled photons,�?? Phys. Rev. A 60, R773 �?? 776 (1999).
[CrossRef]

Phys. Rev. Lett.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, �??New high-intensity source of polarization-entangled photon pairs,�?? Phys. Rev. Lett. 75, 4337 �?? 4341 (1995).
[CrossRef] [PubMed]

Other

M. W. Sasnett, �??Propagation of multimode laser beams: The M2 factor,�?? in The Physics and Technology of Laser Resonators, D. R. Hall and P. E. Jackson. eds. (New York: Adam Hilger, 1989), pp. 132 - 142.

D. Ljunggren, M. Tengner, P. Marsden, M. Pelton, and A. Karlsson, Department of Microelectronics and Information Technology, Royal Institute of Technology, Electrum 229, SE-164 40, Kista, Sweden, are preparing a manuscript to be called �??Theory and experiment of entanglement in a quasi-phasematched two-crystal source.�??

D. Ljunggren and M. Tengner, Department of Microelectronics and Information Technology, Royal Institute of Technology, Electrum 229, SE-164 40, Kista, Sweden, are preparing a manuscript to be called �??Entangled photon paris from two quasi-phasematched crystlas: Optimizing the emission for efficient fiber coupling.�??

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Wavelength of the signal photons, as a function of sample temperature. The points show the experimentally-measured values, while the solid line is the theoretical prediction. (b) Spectrum of the signal photons at a sample temperature of 109.3°C.

Fig. 2.
Fig. 2.

(a) Sample contour plot of the idler beam. (b) Diameter of the idler beam at different distances from the nonlinear crystal (points: measured data, lines: fits).

Fig. 3.
Fig. 3.

Predicted M 2 values for the idler beam as a function of the pump beam waist.

Fig. 4.
Fig. 4.

Schematic of the experimental apparatus. PPKTP=periodically poled KTiPO4, BP=bandpass filter; PBS=polarizing beamsplitter, HWP=half-wave plate, QWP=quarter-wave plate, SM=single-mode, APD=avalanche photodiode.

Fig. 5.
Fig. 5.

Coincidence rate as a function of idler polarization, for three different settings of the signal polarization (points: measured data, lines: fits). Right-hand axis: inferred photon-pair number in the single-mode fibers.

Metrics