Abstract

We report frequency doubling of an extended-cavity diode laser in an a-cut KTP crystal. Continuous-wave, single-mode green light at 540 nm with a power of 22.8 mW was generated from an input of 44.2 mW by type II non-critical phase matching. Stable operation with intensity fluctuations smaller than 1 % peak-to-peak for more than two hours was achieved by employing resonant optical feedback. The optical feedback also reduced the fundamental-wave linewidth to the upper limit of 41 kHz.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, K. Konig, T. Hansch, �??A compact grating-stabilized diode laser system for atomic phyics," Opt. Commun. 117, 541-549 (1995).
    [CrossRef]
  2. S. Nakamura, G. Fasol, The Bule Laser Diode, 2nd ed., (Springer, Heidelberg 1997).
  3. J. Zimmermann, J. Struckmeier, M. R. Hofmann, J.-P. Meyn, "Tunable blue laser based on intracavity frequency doubling with a fan-structured periodically poled LiTaO3 crystal,�?? Opt. Lett. 27, 604-606 (2002).
    [CrossRef]
  4. J. D. Bhawalkar, Y. Mao, H. Po, A. K. Goyal, P. Gavrilovic, Y. Conturie. S. Singh, �??High-power 390-nm laser source based on efficient frequency doubling of a tapered diode laser in an external resonant cavity,�?? Opt. Lett. 24, 823-825 (1999).
    [CrossRef]
  5. Ch. Schwedes, E. Peik, J. von Zanthier , A.Y. Nevsky, H. Walther, �??Narrow-bandwidth diode-laser-based blue and ultraviolet light source,�?? Appl. Phys. B 76, 143-147 (2003).
    [CrossRef]
  6. Y. Hadjar, F. Ducos, and O. Acef, �??Stable 120-mW green output tunable over 2 THz by a second-harmonic generation process in a KTP crystal at room temperature,�?? Opt. Lett. 25, 1367-1369 (2000).
    [CrossRef]
  7. T. Sugita, K. Mizuuchi, Y. Kitaoka, K. Yamamoto, �??31%-efficient blue second-harmonic generation in a periodically poled MgO:LiNbO3 waveguide by frequency doubling of an AlGaAs laser diode,�?? Opt. Lett. 24, 1590-1592 (1999).
    [CrossRef]
  8. Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, �??85% efficiency for cw frequency doubling from 1.08 to 0.54 μm,�?? Opt. Lett. 17, 640-642 (1992).
    [CrossRef] [PubMed]
  9. Ph. Laurent, A.Clarion, Ch.Breant, �??Frequency noise analysis of optically self-locked diode lasers,�?? IEEE J. Quantum Electron. 25, 1131-1142 (1989).
    [CrossRef]
  10. K. Hayasaka, �??Frequency stabilization of an extended-cavity violet diode laser by resonant optical feedback,�?? Opt. Commun. 206, 401-409 (2002).
    [CrossRef]
  11. O.S.Brozek, V. Quetschke, A. Wicht, K. Danzmann, �??Highly efficient cw frequency doubling of 854 nm GaAlAs diode lasers in an external ring cavity,�?? Opt. Commun. 146, 141-146 (1998).
    [CrossRef]
  12. K. Hayasaka, Y. Zhang, K. Kasai, �??Generation of twin beams from an optical parametric oscillator pumped by a frequency-doubled diode laser,�?? Opt. Lett. 29, 1665-1667 (2004).
    [CrossRef] [PubMed]
  13. Y. Zhang, K. Kasai, M.Watanabe, �??Experimental investigation of the intensity fluctuation joint probability and conditional distributions of the twin-beam quantum state,�?? Opt. Express 11, 14-19 (2003).
    [CrossRef] [PubMed]
  14. J. Mertz, T. Debuisschert, A. Heidmann, C. Fabre, E. Giacobino, �??Improvements in the observed intensity correlation of optical parametric oscillator twin beams,�?? Opt. Lett. 16, 1234-1236(1991).
    [CrossRef] [PubMed]

Appl. Phys. B (1)

Ch. Schwedes, E. Peik, J. von Zanthier , A.Y. Nevsky, H. Walther, �??Narrow-bandwidth diode-laser-based blue and ultraviolet light source,�?? Appl. Phys. B 76, 143-147 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

Ph. Laurent, A.Clarion, Ch.Breant, �??Frequency noise analysis of optically self-locked diode lasers,�?? IEEE J. Quantum Electron. 25, 1131-1142 (1989).
[CrossRef]

Opt. Commun. (3)

K. Hayasaka, �??Frequency stabilization of an extended-cavity violet diode laser by resonant optical feedback,�?? Opt. Commun. 206, 401-409 (2002).
[CrossRef]

O.S.Brozek, V. Quetschke, A. Wicht, K. Danzmann, �??Highly efficient cw frequency doubling of 854 nm GaAlAs diode lasers in an external ring cavity,�?? Opt. Commun. 146, 141-146 (1998).
[CrossRef]

L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, K. Konig, T. Hansch, �??A compact grating-stabilized diode laser system for atomic phyics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Opt. Express (1)

Opt. Lett. (7)

J. Mertz, T. Debuisschert, A. Heidmann, C. Fabre, E. Giacobino, �??Improvements in the observed intensity correlation of optical parametric oscillator twin beams,�?? Opt. Lett. 16, 1234-1236(1991).
[CrossRef] [PubMed]

K. Hayasaka, Y. Zhang, K. Kasai, �??Generation of twin beams from an optical parametric oscillator pumped by a frequency-doubled diode laser,�?? Opt. Lett. 29, 1665-1667 (2004).
[CrossRef] [PubMed]

J. Zimmermann, J. Struckmeier, M. R. Hofmann, J.-P. Meyn, "Tunable blue laser based on intracavity frequency doubling with a fan-structured periodically poled LiTaO3 crystal,�?? Opt. Lett. 27, 604-606 (2002).
[CrossRef]

J. D. Bhawalkar, Y. Mao, H. Po, A. K. Goyal, P. Gavrilovic, Y. Conturie. S. Singh, �??High-power 390-nm laser source based on efficient frequency doubling of a tapered diode laser in an external resonant cavity,�?? Opt. Lett. 24, 823-825 (1999).
[CrossRef]

Y. Hadjar, F. Ducos, and O. Acef, �??Stable 120-mW green output tunable over 2 THz by a second-harmonic generation process in a KTP crystal at room temperature,�?? Opt. Lett. 25, 1367-1369 (2000).
[CrossRef]

T. Sugita, K. Mizuuchi, Y. Kitaoka, K. Yamamoto, �??31%-efficient blue second-harmonic generation in a periodically poled MgO:LiNbO3 waveguide by frequency doubling of an AlGaAs laser diode,�?? Opt. Lett. 24, 1590-1592 (1999).
[CrossRef]

Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, �??85% efficiency for cw frequency doubling from 1.08 to 0.54 μm,�?? Opt. Lett. 17, 640-642 (1992).
[CrossRef] [PubMed]

Other (1)

S. Nakamura, G. Fasol, The Bule Laser Diode, 2nd ed., (Springer, Heidelberg 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The setup for frequency doubling of an ECDL in an a-cut KTP placed in an enhancement cavity. Abbreviations are HWP, half-wave plate; PP, prism pair; NDF, neutral density filter;PZT, piezo-electric transducer; PD, photo diode; PM, power meter; HS, harmonic separator.

Fig. 2.
Fig. 2.

Measured dependence of (a) generated second harmonic power, (b) reflected fundamental power, on the input power. The dots are measured data. The curves are calculated from Eq. (3) and (2), respectively.

Fig. 3.
Fig. 3.

Observed intensity stability of the generated second harmonic power. Even without electronic servo the diode laser frequency stayed locked to the cavity for more than an hour. By adding slow electronic servo the power stayed within 0.3% peak-to-peak for more than two hours.

Fig. 4.
Fig. 4.

Spectrum of the fundamental wave observed with a non-confocal Fabry-Perot spectrum analyzer. The curve is the fit with a lorenzian.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P c P 1 = 4 T 1 m ( T 1 + L + E NL P c ) 2 ,
P ref P 1 = ( 1 T 1 ) ( 1 m ) + ( T 1 L E NL P c ) 2 ( T 1 + L + E NL P c ) 2 m ,
P 2 = T 2 E NL P c 2 ,

Metrics