Abstract

The time-energy characteristics of a Q-switched neodymium-doped double-clad fiber laser are presented. Based on the proposed differential equations, a numerical model is developed to simulate this fiber laser. Using this model pulse duration and the energy of generated pulses can be predicted.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C.J. Koester, E. Snitzer, �??Amplification in a fiber laser,�?? Appl. Opt. 3, 1182-1186 (1964).
    [CrossRef]
  2. I.P. Alcock, A.C. Tropper, A.I. Ferguson, D.C. Hanna, �??Q-switched operation of a neodymium-doped monomode fibre laser,�?? Electron. Lett. 272, 84-85 (1985).
  3. A.F. El-Sherif, T.A. King, �??High-energy, high brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator,�?? Opt. Commun. 218, 337-344 (2003).
    [CrossRef]
  4. Z.J. Chen, A.B. Grudinin, J. Porta, J.D. Minelly, �??Enhanced Q-switching in double clad fibre laser,�?? Opt. Lett. 23, 454-456 (1998).
    [CrossRef]
  5. C. Barnard, P. Myslinski, J. Chrostowski, M. Kavehrad, �??Analytical model for rare-earth-doped fiber amplifiers and lasers,�?? IEEE J. Quantum Electron. 30, 1817-1830 (1994).
    [CrossRef]
  6. L.Xiao, P. Yan, M. Gong, W. Wei, P. Ou, �??An approximate analytic solution of strongly pumped Yb-doped double-clad fiber lasers without neglecting the scattering loss,�?? Opt. Commun. 230, 401-410 (2004).
    [CrossRef]
  7. I. Kelson, A. Hardy, �??Optimization of strongly pumped fiber lasers,�?? J. Lightwave Technol. 17, 891-897 (1999).
    [CrossRef]
  8. J. Swiderski, A. Zajac, P. Konieczny, M. Skorczakowski, �??Q-switched double-clad fiber laser,�?? Opto-Electron. Rev. 12 (to be published).

Appl. Opt. (1)

Electron. Lett. (1)

I.P. Alcock, A.C. Tropper, A.I. Ferguson, D.C. Hanna, �??Q-switched operation of a neodymium-doped monomode fibre laser,�?? Electron. Lett. 272, 84-85 (1985).

IEEE J. Quantum Electron. (1)

C. Barnard, P. Myslinski, J. Chrostowski, M. Kavehrad, �??Analytical model for rare-earth-doped fiber amplifiers and lasers,�?? IEEE J. Quantum Electron. 30, 1817-1830 (1994).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (2)

L.Xiao, P. Yan, M. Gong, W. Wei, P. Ou, �??An approximate analytic solution of strongly pumped Yb-doped double-clad fiber lasers without neglecting the scattering loss,�?? Opt. Commun. 230, 401-410 (2004).
[CrossRef]

A.F. El-Sherif, T.A. King, �??High-energy, high brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator,�?? Opt. Commun. 218, 337-344 (2003).
[CrossRef]

Opt. Lett. (1)

Opto-Electron. Rev. (1)

J. Swiderski, A. Zajac, P. Konieczny, M. Skorczakowski, �??Q-switched double-clad fiber laser,�?? Opto-Electron. Rev. 12 (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Simplified model of a Q-switched fiber laser cavity.

Fig. 2.
Fig. 2.

Laser output pulse – simulation result for 2(k0 – ρm)lF=38.4, lF=7 m, Pp(0)=8.4 W and fr=5 kHz.

Fig. 3.
Fig. 3.

Laser output pulse – simulation result for 2(k0 – ρm)lF=56.6, lF=7 m, Pp(0)=12.3 W and fr=5 kHz.

Fig. 4.
Fig. 4.

Pulse duration and pulse energy vs. gain factor 2lF(k0 – ρm) for fiber of 5 m length. Pp(0)=10 W.

Fig. 5.
Fig. 5.

Experimental Q-switched fiber laser set-up.

Fig. 6.
Fig. 6.

Laser output pulse – experimental result.

Fig. 7.
Fig. 7.

Laser output pulse – simulation result.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

J + ( z , t ) z + 1 V J + ( z , t ) t = [ k ( z , t ) ρ m ] J + ( z , t )
J ( z , t ) z + 1 V J ( z , t ) t = [ k ( z , t ) ρ m ] J ( z , t )
d k ( z , t ) d t = k ( z , t ) [ J + ( z , t ) + J ( z , t ) ] E s
J + ( 0 , t ) = R 1 J ( 0 , t ) = J ( 0 , t )
J + ( l S , t ) = T S + ( t ) J + ( l S , t )
J ( l S , t ) = T S ( t ) J + ( l S , t )
J ( l R , t ) = R 2 J + ( l R , t )
J OUT = ( 1 R 2 ) J + ( l R , t )
E OUT ( t ) = t p t J OUT ( t ) d t = ( 1 R 2 ) t p t J + ( l R , t ) d t
J + ( z , 0 ) = J ( z , 0 ) = h v g 2 k 0 τ σ e Ω 4 π l F
k 0 ( t = 0 ) = σ e τ α a h ν p A clad P p ( 0 ) exp [ ( α a + ρ p ) l F ] [ 1 exp ( 1 τ f r ) ]

Metrics