Abstract

We investigated an Laguerre-Gaussian (LG) beam that can carry an orbital angular momentum and has a doughnut-shaped intensity pattern. We developed a multilevel spiral phase plate (SPP) that generates an LG beam by applying the wave surface of a spiral structure directly to a Gaussian beam for application to microscopic laser material processing. We experimentally demonstrate, for the first time, that it is possible to generate an LG beam with the multilevel SPP that allows the use in high intensity laser pulses.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, �??Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,�?? Phys. Rev. A 45, 8185�??8189 (1992).
    [CrossRef] [PubMed]
  2. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, �??Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,�?? Phys. Rev. Lett. 75, 826�??829 (1995).
    [CrossRef] [PubMed]
  3. M. V. Vasnetsov, J. P. Torres, D. V. Petrov, and Lluis Torner, �??Observation of the orbital angular momentum spectrum of a light beam,�?? Opt. Lett. 28, 2285�??2287 (2003).
    [CrossRef] [PubMed]
  4. K. T. Gahagan and G. A. Swartzlander, Jr, �??Optical vortex trapping of particles,�?? Opt. Lett. 21, 827�??829 (1996).
    [CrossRef] [PubMed]
  5. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, �??Optical particle trapping with high-order doughnut beams produced using high efficiency computer generated holograms,�?? J. Mod. Opt. 42, 217�??223 (1995).
    [CrossRef]
  6. J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, �??Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes,�?? Phys. Rev. A 56, 4193�??4196 (1997).
    [CrossRef]
  7. L. Allen, M. Babiker, W. K. Lai, and V. E. Lembessis, �??Atom dynamics in multiple Laguerre-Gaussian beams,�?? Phys. Rev. A 54, 4259�??4270 (1996).
    [CrossRef] [PubMed]
  8. M.W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P.Woerdman, �??Astigmatic laser mode converters and transfer of orbital angular momentum,�?? Opt. Commun. 96, 123�??132 (1993).
    [CrossRef]
  9. M. Padgett, J. Arlt, N. Simpson, and L. Allen, �??An experiment to observe the intensity and phase structure of Laguerre-Gaussian laser modes,�?? Am. J. Phys. 64, 77�??82 (1996).
    [CrossRef]
  10. S. N. Khonina, V. V. Kotlyar, M. V. Shinkaryev, V. A. Soifer, and G. V. Uspleniev, �??The phase rotor filter,�?? J. Mod. Opt. 39, 1147�??1154 (1992).
    [CrossRef]
  11. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen and J. P. Woerdman, �??Helical-wavefront laser beams produced with a spiral phaseplate,�?? Opt. Commun. 112, 321�??327 (1994).
    [CrossRef]
  12. V. Yu. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, �??Laser beams with screw dislocations in their wavefronts,�?? JETP Lett. 52, 429�??431 (1990).
  13. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, �??Generation of optical phase singularities by computer-generated holograms,�?? Opt. Lett. 17, 221�??223 (1992).
    [CrossRef] [PubMed]

Am. J. Phys.

M. Padgett, J. Arlt, N. Simpson, and L. Allen, �??An experiment to observe the intensity and phase structure of Laguerre-Gaussian laser modes,�?? Am. J. Phys. 64, 77�??82 (1996).
[CrossRef]

J. Mod. Opt.

S. N. Khonina, V. V. Kotlyar, M. V. Shinkaryev, V. A. Soifer, and G. V. Uspleniev, �??The phase rotor filter,�?? J. Mod. Opt. 39, 1147�??1154 (1992).
[CrossRef]

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, �??Optical particle trapping with high-order doughnut beams produced using high efficiency computer generated holograms,�?? J. Mod. Opt. 42, 217�??223 (1995).
[CrossRef]

JETP Lett.

V. Yu. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, �??Laser beams with screw dislocations in their wavefronts,�?? JETP Lett. 52, 429�??431 (1990).

Opt. Commun.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen and J. P. Woerdman, �??Helical-wavefront laser beams produced with a spiral phaseplate,�?? Opt. Commun. 112, 321�??327 (1994).
[CrossRef]

M.W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P.Woerdman, �??Astigmatic laser mode converters and transfer of orbital angular momentum,�?? Opt. Commun. 96, 123�??132 (1993).
[CrossRef]

Opt. Lett.

Phys. Rev. A

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, �??Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,�?? Phys. Rev. A 45, 8185�??8189 (1992).
[CrossRef] [PubMed]

J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, �??Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes,�?? Phys. Rev. A 56, 4193�??4196 (1997).
[CrossRef]

L. Allen, M. Babiker, W. K. Lai, and V. E. Lembessis, �??Atom dynamics in multiple Laguerre-Gaussian beams,�?? Phys. Rev. A 54, 4259�??4270 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, �??Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,�?? Phys. Rev. Lett. 75, 826�??829 (1995).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Multilevel SPP of 16 steps fabrication process.

Fig. 2.
Fig. 2.

Phase distribution of the fabricated SPP.

Fig. 3.
Fig. 3.

Interference pattern of the generated LG beam and the spherical reference wave: (a) experimental results; (b) numerical simulation.

Fig. 4.
Fig. 4.

Interference pattern of the generated LG beam and the plane reference wave: (a) experimental results; (b) numerical simulation.

Fig. 5.
Fig. 5.

(a) Far-field pattern of the generated LG beam. (b) The horizontal linear profile of the intensity distribution in (a).

Tables (1)

Tables Icon

Table 1. Dependence of the number of the discrete step N on conversion efficiency.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

u nm LG ( r , ϕ , z ) = C nm LG ( 1 w ) exp ( i k r 2 2 R ) exp ( r 2 w 2 ) exp [ i ( n + m + 1 ) ψ ]
× exp [ i ( n m ) ϕ ] ( 1 ) min ( n , m ) ( r 2 w ) n m L min ( n , m ) n m ( 2 r 2 w 2 )
R ( z ) = ( z R 2 + z 2 ) z , k w 2 ( z ) 2 = ( z R 2 + z 2 ) z R , ψ ( z ) = tan 1 ( z z R ) ,
a nm , st = u st LG exp ( i ϕ ) u nm LG ,
m λ ( n 1 ) 1 , ( m = 0 , 1 , 2 , , 15 )

Metrics