Abstract

Optical coherence tomography (OCT) is an emerging medical imaging technology that can generate high resolution, cross-sectional images of tissue in situ and in real time. Although endoscopic OCT has been used successfully to identify certain pathologies in the gastrointestinal tract, the resolution of current endoscopic OCT systems has been limited to 10–15 µm for in vivo studies. In this study, in vivo imaging of the rabbit gastrointestinal tract is demonstrated at a three-fold higher resolution (<5 µm), using a broadband Cr4+:Forsterite laser as the optical light source. Images acquired from the esophagus, trachea, and colon reveal high-resolution details of tissue architecture. Definitive correlation of architectural features in OCT images and histological sections is shown. The ability of ultrahigh resolution endoscopic OCT to image tissue morphology at an unprecedented resolution in vivo advances the development of OCT as a potential imaging tool for the early detection of neoplastic changes in biological tissue.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. A. Jemal, R.C. Tiwari, T. Murray, A. Ghafoor, E. Ward, E.J. Feuer, and M.J. Thun, "Cancer Statistics 2004," CA Cancer J. Clin. 54, 8-29 (2004).
    [CrossRef] [PubMed]
  3. G.J. Tearney, S.A. Boppart, B.E. Bouma, M.E. Brezinski, N.J. Weissman, J.F. Southern, and J.G. Fujimoto, "Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography," Opt. Lett. 21, 543-545 (1996).
    [CrossRef] [PubMed]
  4. G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitvis, J.F. Southern, and J.G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
    [CrossRef] [PubMed]
  5. J.A. Izatt, M.D. Kulkarni, H.W. Wang, K. Kobayashi, and M.V. Sivak, "Optical coherence tomography and microscopy in gastrointestinal tissues," IEEE J. Sel. Top. Quantum Electron. 2, 1017-1028 (1996).
    [CrossRef]
  6. G.J. Tearney, M.E. Brezinski, J.F. Southern, B.E. Bouma, S.A. Boppart, and J.G. Fujimoto, "Optical biopsy in human gastrointestinal tissue using optical coherence tomography," Am. J. Gastroenterology 92, 1800-1804 (1997).
  7. A.M. Sergeev, V.M. Gelikonov, G.V. Gelikonov, F.I. Feldchtein, R.V. Kuranov, N.D. Gladkova, N.M. Shakhova, L.B. Snopova, A.V. Shakov, I.A. Kuznetzova, A.N. Denisenko, V.V. Pochinko, Y.P. Chumakov, and O.S. Streltzova, "In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa," Opt. Express 1, 432-440 (1997).
    [CrossRef] [PubMed]
  8. G.J. Tearney, B. Bouma, and J. Fujimoto, "High speed phase- and group delay scanning with a grating-based phase control delay line," Opt. Lett. 22, 1811-1813 (1997).
    [CrossRef]
  9. A.M. Rollins, M. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J.A. Izatt, "In vivo video rate optical coherence tomography," Opt. Express 3, 219-229 (1998).
    [CrossRef] [PubMed]
  10. B.E. Bouma and G.J. Tearney, "Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography," Opt. Lett. 24, 531-533 (1999).
    [CrossRef]
  11. A.M Rollins and J.A. Izatt, "Optimal interferometer designs for optical coherence tomography," Opt. Lett. 24, 1484-1486 (1999).
    [CrossRef]
  12. A.M. Rollins, R. Ung-arunyawee, A. Chak, C.K. Wong, K. Kobayashi, M.V. Sivak, and J.A. Izatt, "Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design," Opt. Lett. 24, 1358-1360 (1999).
    [CrossRef]
  13. V.X.D. Yang, M.L. Gordon, S.J. Tang, N.E. Marcon, G. Gardiner, B. Qi, S. Bisland, E. Seng-Yue, S. Lo, J. Pekar, B.C. Wilson, and I.A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts," Opt. Express 11, 2416-2424 (2003).
    [CrossRef] [PubMed]
  14. F.I. Feldchtein, G.V. Gelikonov, V.M. Gelikonov, R.V. Kuranov, A. Sergeev, N.D. Gladkova, A.V. Shakhov, N.M. Shakova, L.B. Snopova, A.B. Terent'eva, E.V. Zagainova, Y.P. Chumakov, and I.A. Kuznetzova, "Endoscopic applications of optical coherence tomography," Opt. Express 3, 257-270 (1998).
    [CrossRef] [PubMed]
  15. S. Brand, J.M. Poneros, B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishioka, "Optical coherence tomography in the gastrointestinal tract," Endoscopy 32, 796-803 (2000).
    [CrossRef] [PubMed]
  16. M.V. Sivak, K. Kobayashi, J.A. Izatt, A.M. Rollins, R. Ung-runyawee, A. Chak, R.C.K. Wong, G.A. Isenberg, and J. Willis, "High-resolution endoscopic imaging of the GI tract using optical coherence tomography," Gastrointestinal Endoscopy 51, 474-479 (2000).
    [CrossRef] [PubMed]
  17. B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishioka, "High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography," Gastrointestinal Endoscopy 51, 467-474 (2000).
    [CrossRef] [PubMed]
  18. X.D. Li, S.A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M.L. Krinsky, M.E. Brezinski, and J.G. Fujimoto, "Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett's esophagus," Endoscopy 32, 921-930 (2000).
    [CrossRef]
  19. G. Zuccaro, N. Gladkova, J. Vargo, F. Feldchtein, E. Zagaynova, D. Conwell, G. Falk, J. Goldblum, J. Dumot, J. Ponsky, G. Gelikonov, B. Davros, E. Donchenko, and J. Richter, "Optical coherence tomography of the esophagus and proximal stomach in health and disease," Am. J. Gastroenterology 96, 2633-2639 (2001).
    [CrossRef]
  20. J. Poneros, S. Brand, and B. Bouma, "Diagnosis of specialized intestinal metaplasia by optical coherence tomography," Gastroenterology 120, 7-12 (2001).
    [CrossRef] [PubMed]
  21. J.M. Poneros, G.J. Tearney, M. Shiskov, P.B. Kelsey, G.Y. Lauwers, N.S. Nishioka, and B.E. Bouma, "Optical coherence tomography of the biliary tree during ERCP," Gastrointestinal Endoscopy 55, 84-88 (2002).
    [CrossRef] [PubMed]
  22. P.R. Pfau, M.V. Sivak, Jr., A. Chak, M. Kinnard, R.C. Wong, G.A. Isenberg, J.A. Izatt, A. Rollins, and V. Westphal, "Criteria for the diagnosis of dysplasia by endoscopic optical coherence tomography," Gastrointestinal Endoscopy 58, 196-202 (2003).
    [CrossRef] [PubMed]
  23. W. Drexler, U. Morgner, F.X. Kartner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, and J.G. Fujimoto, "In vivo ultrahigh resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
    [CrossRef]
  24. B.E. Bouma, G.J. Tearney, I.P. Bilinsky, and B. Golubovic, "Self phase modulated Kerr-lens mode locked Cr:forsterite laser source for optical coherence tomography," Opt. Lett. 21, 1839-1841 (1996).
    [CrossRef] [PubMed]
  25. C. Chudoba, J.G. Fujimoto, E.P. Ippen, H.A. Haus, U. Morgner, F.X. Kärtner, V. Scheuer, G. Angelow, and T. Tschudi, "All-solid-state Cr:forsterite laser generating 14 fs pulses at 1.3 µm," Opt. Lett. 26, 292-294 (2001).
    [CrossRef]
  26. F.X. Kartner, N. Matuschek, T. Schibli, U. Keller, H.A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, "Design and fabrication of double-chirped mirrors," Opt. Lett. 22, 831-833 (1997).
    [CrossRef] [PubMed]
  27. M. Conio, G. Lapertosa, S. Blanchi, and R. Filiberti, "Barrett's esophagus: an update," Critical Reviews in Oncology Hematology 46, 187-206 (2003).
    [CrossRef]
  28. S. Haag and G. Holtmann, "Reflux disease and Barrett's esophagus," Endoscopy 35, 112-117 (2003).
    [CrossRef] [PubMed]

Am. J. Gastroenterology (2)

G. Zuccaro, N. Gladkova, J. Vargo, F. Feldchtein, E. Zagaynova, D. Conwell, G. Falk, J. Goldblum, J. Dumot, J. Ponsky, G. Gelikonov, B. Davros, E. Donchenko, and J. Richter, "Optical coherence tomography of the esophagus and proximal stomach in health and disease," Am. J. Gastroenterology 96, 2633-2639 (2001).
[CrossRef]

G.J. Tearney, M.E. Brezinski, J.F. Southern, B.E. Bouma, S.A. Boppart, and J.G. Fujimoto, "Optical biopsy in human gastrointestinal tissue using optical coherence tomography," Am. J. Gastroenterology 92, 1800-1804 (1997).

CA Cancer J. Clin. (1)

A. Jemal, R.C. Tiwari, T. Murray, A. Ghafoor, E. Ward, E.J. Feuer, and M.J. Thun, "Cancer Statistics 2004," CA Cancer J. Clin. 54, 8-29 (2004).
[CrossRef] [PubMed]

Critical Reviews in Oncology Hematology (1)

M. Conio, G. Lapertosa, S. Blanchi, and R. Filiberti, "Barrett's esophagus: an update," Critical Reviews in Oncology Hematology 46, 187-206 (2003).
[CrossRef]

Endoscopy (3)

S. Haag and G. Holtmann, "Reflux disease and Barrett's esophagus," Endoscopy 35, 112-117 (2003).
[CrossRef] [PubMed]

S. Brand, J.M. Poneros, B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishioka, "Optical coherence tomography in the gastrointestinal tract," Endoscopy 32, 796-803 (2000).
[CrossRef] [PubMed]

X.D. Li, S.A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M.L. Krinsky, M.E. Brezinski, and J.G. Fujimoto, "Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett's esophagus," Endoscopy 32, 921-930 (2000).
[CrossRef]

Gastroenterology (1)

J. Poneros, S. Brand, and B. Bouma, "Diagnosis of specialized intestinal metaplasia by optical coherence tomography," Gastroenterology 120, 7-12 (2001).
[CrossRef] [PubMed]

Gastrointestinal Endoscopy (4)

J.M. Poneros, G.J. Tearney, M. Shiskov, P.B. Kelsey, G.Y. Lauwers, N.S. Nishioka, and B.E. Bouma, "Optical coherence tomography of the biliary tree during ERCP," Gastrointestinal Endoscopy 55, 84-88 (2002).
[CrossRef] [PubMed]

P.R. Pfau, M.V. Sivak, Jr., A. Chak, M. Kinnard, R.C. Wong, G.A. Isenberg, J.A. Izatt, A. Rollins, and V. Westphal, "Criteria for the diagnosis of dysplasia by endoscopic optical coherence tomography," Gastrointestinal Endoscopy 58, 196-202 (2003).
[CrossRef] [PubMed]

M.V. Sivak, K. Kobayashi, J.A. Izatt, A.M. Rollins, R. Ung-runyawee, A. Chak, R.C.K. Wong, G.A. Isenberg, and J. Willis, "High-resolution endoscopic imaging of the GI tract using optical coherence tomography," Gastrointestinal Endoscopy 51, 474-479 (2000).
[CrossRef] [PubMed]

B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishioka, "High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography," Gastrointestinal Endoscopy 51, 467-474 (2000).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

J.A. Izatt, M.D. Kulkarni, H.W. Wang, K. Kobayashi, and M.V. Sivak, "Optical coherence tomography and microscopy in gastrointestinal tissues," IEEE J. Sel. Top. Quantum Electron. 2, 1017-1028 (1996).
[CrossRef]

Opt. Express (4)

Opt. Lett. (9)

G.J. Tearney, B. Bouma, and J. Fujimoto, "High speed phase- and group delay scanning with a grating-based phase control delay line," Opt. Lett. 22, 1811-1813 (1997).
[CrossRef]

B.E. Bouma and G.J. Tearney, "Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography," Opt. Lett. 24, 531-533 (1999).
[CrossRef]

A.M Rollins and J.A. Izatt, "Optimal interferometer designs for optical coherence tomography," Opt. Lett. 24, 1484-1486 (1999).
[CrossRef]

A.M. Rollins, R. Ung-arunyawee, A. Chak, C.K. Wong, K. Kobayashi, M.V. Sivak, and J.A. Izatt, "Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design," Opt. Lett. 24, 1358-1360 (1999).
[CrossRef]

G.J. Tearney, S.A. Boppart, B.E. Bouma, M.E. Brezinski, N.J. Weissman, J.F. Southern, and J.G. Fujimoto, "Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography," Opt. Lett. 21, 543-545 (1996).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F.X. Kartner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, and J.G. Fujimoto, "In vivo ultrahigh resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

B.E. Bouma, G.J. Tearney, I.P. Bilinsky, and B. Golubovic, "Self phase modulated Kerr-lens mode locked Cr:forsterite laser source for optical coherence tomography," Opt. Lett. 21, 1839-1841 (1996).
[CrossRef] [PubMed]

C. Chudoba, J.G. Fujimoto, E.P. Ippen, H.A. Haus, U. Morgner, F.X. Kärtner, V. Scheuer, G. Angelow, and T. Tschudi, "All-solid-state Cr:forsterite laser generating 14 fs pulses at 1.3 µm," Opt. Lett. 26, 292-294 (2001).
[CrossRef]

F.X. Kartner, N. Matuschek, T. Schibli, U. Keller, H.A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, "Design and fabrication of double-chirped mirrors," Opt. Lett. 22, 831-833 (1997).
[CrossRef] [PubMed]

Science (2)

G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitvis, J.F. Southern, and J.G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of endoscopic OCT imaging system using a broadband Cr4+:Forsterite femtosecond laser light source.

Fig. 2.
Fig. 2.

(a) Optical bandwidth of the Cr4+:Forsterite light source at the input to the OCT system and transmitted through to the sample. The modelocked laser has high output power and excellent noise performance and enables a three-fold improvement in axial image resolution over standard endoscopic OCT systems using a superluminescent diode light source. (b) Measured axial resolution of 5 µm in air, corresponding to 3.7 µm resolution in tissue. (c) Plot of the logarithmic point spread function shows low sidelobes in the point spread function. The measured sensitivity was 102 dB with 10 mW of incident power on the sample.

Fig. 3.
Fig. 3.

(a) In vivo endoscopic OCT image of rabbit esophagus with (b) corresponding histology. Good correlation is seen between OCT and histology. The epithelium (e), lamina propria (lp), muscularis mucosa (mm), submucosa (sm), inner (im) and outer muscular (om) layers are visible on both the OCT image and histology.

Fig. 4.
Fig. 4.

(a) In vivo OCT image and (b) histology of rabbit esophagus and trachea viewed intraluminally from the esophagus. Tracheal hyaline cartilage (hc) between the tracheal mucosa and trachealis muscle is well defined. The image demonstrates the ability of the endoscopic OCT system to image deeply within the tissue. Trichrome stain was used to highlight cartilage and muscle layers.

Fig. 5.
Fig. 5.

In vivo image showing sequential OCT scans spanning the rabbit epiglottis to the inner esophagus. Ultrahigh resolution imaging capability is maintained over a large field allowing detailed discrimination of tissue structure. Architectural morphology of the proximal esophagus is well defined, as is the transition from the mouth to the esophagus at the epiglottis.

Fig. 6.
Fig. 6.

(a) Large-field scan of rabbit esophagus in vivo shows the transition region from the esophagus to the proximal stomach. There is excellent differentiation of esophageal versus gastric mucosa. Visible structures include epithelial folds (ef), esophageal mucosa (em), gastric transition (gt), and gastric mucosa (gm). (b) Corresponding histological cross section stained with hematoxylin and eosin.

Fig. 7.
Fig. 7.

(a) In vivo endoscopic OCT image of rabbit colon with (b) corresponding histology. Delineation of upper colonic mucosa (cm), muscular mucosa (mm), submucosa (sm), and muscularis externa (me) is possible. Enlarged images show the capability to visualize crypt structure. Tissue separations seen in the lower part of the histology images are due to a histology processing artifact.

Fig. 8.
Fig. 8.

(a) Rotational scanning images of rabbit esophagus and (b) proximal stomach in vivo. The esophageal lamina structure is well distinguished and high penetration is achieved. Epithelium (e), lamina propria (lp), inner muscularis (im), and outer (om) muscularis layers can be seen. Increased scattering with reduced image penetration is observed in the stomach, which is indicative of gastric mucosa architecture (gm).

Fig. 9.
Fig. 9.

(a) Rotational scan and (b) longitudinal pullback cross section of rabbit colon in vivo. Architectural detail is distinguished over the large scan field seen in the lower image. The location of the rotational image (a) in the pullback sequence is indicated by the solid line in (b). The cross-sectional imaging plane of the pullback scan is shown as a dashed line in the rotational image (a). The far right area in the pullback cross section is the animal rectum.

Metrics