Abstract

We fabricated nanometer- and micrometer-order diameter optical fibers (NMOFs) by drawing them in a microfurnace comprising a sapphire tube heated with a CO2 laser. Using very short - a few mm long - fiber biconical tapers having a submicron waist, which can be bent locally in a free space by translation of the taper ends, we studied the effect of bending and looping on the transmission characteristics of a free NMOF. In particular, we have demonstrated an optical interferometer built of a coiled self-coupling NMOF.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical microfiber coil delay line

M. Sumetsky
Opt. Express 17(9) 7196-7205 (2009)

Microfiber Fabry–Perot interferometer fabricated by taper-drawing technique and its application as a radio frequency interrogated refractive index sensor

Jiejun Zhang, Qizhen Sun, Ruibing Liang, Jianghai Wo, Deming Liu, and Perry Shum
Opt. Lett. 37(14) 2925-2927 (2012)

Demonstration of a reef knot microfiber resonator

Guillaume Vienne, Aurélien Coillet, Philippe Grelu, Mohammed El Amraoui, Jean-Charles Jules, Frédéric Smektala, and Limin Tong
Opt. Express 17(8) 6224-6229 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
    [Crossref] [PubMed]
  2. J. Bures and R. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A,  16, 1992–1996 (1999).
    [Crossref]
  3. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibres,” Opt. Lett. 25, 1415–1417 (2000).
    [Crossref]
  4. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett. 91, 04902 (2003).
    [Crossref]
  5. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature,  426, 816–819 (2003).
    [Crossref] [PubMed]
  6. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, and P. St.J. Russell, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express,  12, 2864–2869 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864.
    [Crossref] [PubMed]
  7. G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express,  12, 2258–2263 (2004).
    [Crossref] [PubMed]
  8. F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997).
    [Crossref]
  9. W. Tan, Z. Y. Shi, S. Smith, D. Birnbaum, and R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science,  258, 778–781 (1992).
    [Crossref] [PubMed]
  10. M. Sumetsky, “Optical fiber microcoil resonator,” Opt. Express,  12, 2303–2316 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2303.
    [Crossref] [PubMed]
  11. T. E. Dimmick, G. Kakarantzas, T. A. Birks, and P. St.J. Russell, “Carbon dioxide laser fabrication of fused-fiber couplers and tapers,” Appl. Opt. 38, 6845–6848 (1999).
    [Crossref]
  12. A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modeling in CO2 laser processing of optical fibres,” Opt. Commun. 152, 324–328 (1998).
    [Crossref]
  13. R. C. Oehrle, “Galvanometer beam-scanning system for laser fiber drawing,” Appl. Opt. 18, 496–500 (1979).
    [Crossref] [PubMed]
  14. S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, “Azimuthally symmetric long-period fiber gratings fabricated with CO2 laser,” Microwave Opt. Technol. Lett.,  41, 188–190 (2004).
    [Crossref]
  15. A. W. Snyder and J. D. Love, Optical waveguide theory, (Chapman & Hall, London, 1983).
  16. L.F. Stokes, M. Chodorow, and H.J. Shaw, “All-single-mode fiber resonator,” Opt. Lett.,  7, 288–290 (1982).
    [Crossref] [PubMed]
  17. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express,  12, 1025–1035 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025.
    [Crossref] [PubMed]

2004 (5)

2003 (2)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett. 91, 04902 (2003).
[Crossref]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature,  426, 816–819 (2003).
[Crossref] [PubMed]

2000 (1)

1999 (2)

1998 (1)

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modeling in CO2 laser processing of optical fibres,” Opt. Commun. 152, 324–328 (1998).
[Crossref]

1997 (2)

1992 (1)

W. Tan, Z. Y. Shi, S. Smith, D. Birnbaum, and R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science,  258, 778–781 (1992).
[Crossref] [PubMed]

1982 (1)

1979 (1)

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature,  426, 816–819 (2003).
[Crossref] [PubMed]

Birks, T. A.

Birnbaum, D.

W. Tan, Z. Y. Shi, S. Smith, D. Birnbaum, and R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science,  258, 778–781 (1992).
[Crossref] [PubMed]

Brambilla, G.

Bures, J.

Cheung, G.

Chodorow, M.

Chung, Y.

S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, “Azimuthally symmetric long-period fiber gratings fabricated with CO2 laser,” Microwave Opt. Technol. Lett.,  41, 188–190 (2004).
[Crossref]

Dimmick, T. E.

Finazzi, V.

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature,  426, 816–819 (2003).
[Crossref] [PubMed]

Ghosh, R.

Grellier, A. J. C.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modeling in CO2 laser processing of optical fibres,” Opt. Commun. 152, 324–328 (1998).
[Crossref]

Han, W. T.

S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, “Azimuthally symmetric long-period fiber gratings fabricated with CO2 laser,” Microwave Opt. Technol. Lett.,  41, 188–190 (2004).
[Crossref]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature,  426, 816–819 (2003).
[Crossref] [PubMed]

Jacques, F.

Kakarantzas, G.

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett. 91, 04902 (2003).
[Crossref]

Knight, J. C.

Kopelman, R.

W. Tan, Z. Y. Shi, S. Smith, D. Birnbaum, and R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science,  258, 778–781 (1992).
[Crossref] [PubMed]

Ladouceur, F.

F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997).
[Crossref]

Leon-Saval, S. G.

Lou, J.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express,  12, 1025–1035 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025.
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature,  426, 816–819 (2003).
[Crossref] [PubMed]

Love, J. D.

A. W. Snyder and J. D. Love, Optical waveguide theory, (Chapman & Hall, London, 1983).

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature,  426, 816–819 (2003).
[Crossref] [PubMed]

Mazur, E.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express,  12, 1025–1035 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025.
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature,  426, 816–819 (2003).
[Crossref] [PubMed]

Oehrle, R. C.

Oh, S. T.

S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, “Azimuthally symmetric long-period fiber gratings fabricated with CO2 laser,” Microwave Opt. Technol. Lett.,  41, 188–190 (2004).
[Crossref]

Paek, U. C.

S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, “Azimuthally symmetric long-period fiber gratings fabricated with CO2 laser,” Microwave Opt. Technol. Lett.,  41, 188–190 (2004).
[Crossref]

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett. 91, 04902 (2003).
[Crossref]

Pannell, C. N.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modeling in CO2 laser processing of optical fibres,” Opt. Commun. 152, 324–328 (1998).
[Crossref]

Richardson, D. J.

Russell, P. St. J.

Russell, P. St.J.

Shaw, H.J.

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature,  426, 816–819 (2003).
[Crossref] [PubMed]

Shi, Z. Y.

W. Tan, Z. Y. Shi, S. Smith, D. Birnbaum, and R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science,  258, 778–781 (1992).
[Crossref] [PubMed]

Smith, S.

W. Tan, Z. Y. Shi, S. Smith, D. Birnbaum, and R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science,  258, 778–781 (1992).
[Crossref] [PubMed]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical waveguide theory, (Chapman & Hall, London, 1983).

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett. 91, 04902 (2003).
[Crossref]

Stokes, L.F.

Sumetsky, M.

Tan, W.

W. Tan, Z. Y. Shi, S. Smith, D. Birnbaum, and R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science,  258, 778–781 (1992).
[Crossref] [PubMed]

Tong, L.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express,  12, 1025–1035 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025.
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature,  426, 816–819 (2003).
[Crossref] [PubMed]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett. 91, 04902 (2003).
[Crossref]

Wadsworth, W. J.

Zayer, N. K.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modeling in CO2 laser processing of optical fibres,” Opt. Commun. 152, 324–328 (1998).
[Crossref]

Appl. Opt. (2)

J. Lightwave Technol. (1)

F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997).
[Crossref]

J. Opt. Soc. Am. A (1)

Microwave Opt. Technol. Lett. (1)

S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, “Azimuthally symmetric long-period fiber gratings fabricated with CO2 laser,” Microwave Opt. Technol. Lett.,  41, 188–190 (2004).
[Crossref]

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature,  426, 816–819 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modeling in CO2 laser processing of optical fibres,” Opt. Commun. 152, 324–328 (1998).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett. 91, 04902 (2003).
[Crossref]

Science (1)

W. Tan, Z. Y. Shi, S. Smith, D. Birnbaum, and R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science,  258, 778–781 (1992).
[Crossref] [PubMed]

Other (1)

A. W. Snyder and J. D. Love, Optical waveguide theory, (Chapman & Hall, London, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Illustration of the setup for drawing NMOF using a sapphire tube heated with a CO2 laser

Fig. 2.
Fig. 2.

SEM image of a NMOF drawn in sapphire microfurnace by translation of stage 1

Fig. 3.
Fig. 3.

Illustration of the setup for NMOF bending. The ends of biconical fiber taper are glued to the stages. The waist of taper can be bent by translation of one of the stages in three dimensions.

Fig. 4.
Fig. 4.

— variation of diameter of fiber tapers 1 and 2 used in our experiments as a function of length; insert shows variation of diameter for the NMOF parts of these tapers. b — transmission spectrum for the same fibers. Solid curves — fiber 1; dashed curves — fiber 2.

Fig. 5.
Fig. 5.

Transmission spectrum and digitally sharpened optical microscope images for different configurations of NMOF contained in taper 1. a — bent NMOF; b and c — coiled NMOF; d — NMOF with straight central part.

Fig. 6.
Fig. 6.

Comparison of the experimental transmission spectrum a, shown in Fig. 5 with theoretical fits obtained using Eqs. (1)(3) for transmission loss. The bend radius, length of bent NMOF segment, and NMOF diameter for curves 1–5 are specified in the insert.

Fig. 7.
Fig. 7.

Illustration of two interfering waves (dashed) contributing to the transmission spectrum of the self-coupling microloop. 1 — a wave propagating through the loop; 2 — a wave propagating through the self-coupling region.

Fig. 8.
Fig. 8.

Transmission spectrum and sharpen optical microscope images for different configurations of NMOF contained in taper 2. a, b — bent and coiled NMOF without self coupling; c,d,e — self-coupling microcoils with successively decreasing bend radius. Fig. 8e shows comparison of the experimental data with theoretical dependence defined in the text.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P ( λ 0 ) = exp ( γ ( λ 0 ) L )
γ ( λ 0 ) = U ( λ 0 ) 2 2 V ( λ 0 ) 2 W ( λ 0 ) 3 2 K 1 2 ( W ( λ 0 ) ) ( π rR ) 1 2 exp [ 4 W ( λ 0 ) 3 3 V ( λ 0 ) 2 ( 1 1 n 2 ) R r ] .
V ( λ 0 ) = 2 π r λ 0 ( n 2 1 ) 1 2 , U ( λ 0 ) = r ( 4 π 2 n 2 λ 0 2 β ( λ 0 ) 2 ) 1 2 , W ( λ 0 ) = r ( β ( λ 0 ) 2 4 π 2 λ 0 2 ) 1 2
[ J 1 ( U ) U J 1 ( U ) + K 1 ( W ) W K 1 ( W ) ] [ J 1 ( U ) U J 1 ( U ) + 1 n 2 K 1 ( W ) W K 1 ( W ) ] = ( β λ 0 2 π n ) 2 ( V UW ) 4
P ( λ 0 ) = a 1 ( λ 0 ) exp ( i β ( λ 0 ) S ) + a 2 ( λ 0 ) 2

Metrics