Abstract

We demonstrate a new class of hollow-core Bragg fibers that are composed of concentric cylindrical silica rings separated by nanoscale support bridges. We theoretically predict and experimentally observe hollow-core confinement over an octave frequency range. The bandwidth of bandgap guiding in this new class of Bragg fibers exceeds that of other hollow-core fibers reported in the literature. With only three rings of silica cladding layers, these Bragg fibers achieve propagation loss of the order of 1 dB/m.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. Yeh, A. Yariv, and E. Marom, �??Theory of Bragg fiber,�?? J. Opt. Soc. Am. 68, 1196-1201 (1978).
    [CrossRef]
  2. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, �??Photonic band gap guidance in optical fibers,�?? Science 282, 1476-1478 (1998).
    [CrossRef] [PubMed]
  3. R. F. Cregan et al., �??Single-mode photonic band gap guidance of light in air,�?? Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  4. J. C. Knight, �??Photonic crystal fibres,�?? Nature 424, 847-851 (2003).
    [CrossRef] [PubMed]
  5. Y. Fink et al., �??Guiding optical light in air using an all-dielectric structure,�?? J. Lightwave Technol. 17, 2039-2041 (1999).
    [CrossRef]
  6. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, �??Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,�?? Nature 420, 650-653 (2002).
    [CrossRef] [PubMed]
  7. C. M. Smith et al., �??Low-loss hollow-core silica/air photonic bandgap fibre,�?? Nature 424, 657-659 (2003).
    [CrossRef] [PubMed]
  8. Y. Xu, and A. Yariv, �??Loss analysis of air-core photonic crystal fibers,�?? Opt. Lett. 28, 1885-1887 (2003).
    [CrossRef] [PubMed]
  9. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, �??Stimulated Raman scattering in hydrogenfilled hollow-core photonic crystal fibres,�?? Science 298, 399-402 (2002).
    [CrossRef] [PubMed]
  10. D. G. Ouzounov et al., �??Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,�?? Science 301, 1702-1704 (2003).
    [CrossRef] [PubMed]
  11. N. A. Mortensen, and M. D. Nielsen, �??Modeling of realistic cladding structures for air-core photonic bandgap fibers.�?? Opt. Lett. 29, 349-351 (2004).
    [CrossRef] [PubMed]
  12. T. P. White, R. C. McPhedran, L. C. Botten, G. H. Smith, and C. M. de Sterke, �??Calculations of air-guided modes in photonic crystal fibers using the multipole method,�?? Opt. Express 9, 721-732 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-721.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-721</a>
    [CrossRef] [PubMed]
  13. S. G. Johnson et al., �??Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers.�?? Opt. Express 9, 748-779 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748</a>
    [CrossRef] [PubMed]
  14. A. Argyros, �??Guided modes and loss in Bragg fibres,�?? Opt. Express 10, 1411-1417 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-24-1411.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-24-1411</a>
    [CrossRef] [PubMed]
  15. Y. Xu, A. Yariv, J. G. Fleming, and S. Lin, �??Asymptotic analysis of silicon based Bragg fibers,�?? Opt. Express 11, 1039-1049 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1039.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1039</a>
    [CrossRef] [PubMed]
  16. Y. Xu, R. K. Lee, and A. Yariv, �??Asymptotic analysis of Bragg fibers,�?? Opt. Lett. 25, 1756-1758 (2000).
    [CrossRef]
  17. A. Yariv, and P. Yeh, Optical Waves in Crystals, (Wiley, New York, 1984).
  18. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, New Jersey, 1995).
  19. E. Chow et al., �??Three-dimensional control of light in a two-dimensional photonic crystal slab,�?? Nature 407, 983-986 (2000).
    [CrossRef] [PubMed]
  20. M. Notomi et al., �??Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,�?? IEEE J. Quantum Electron. 38, 736-742 (2002).
    [CrossRef]

IEEE J. Quantum Electron

M. Notomi et al., �??Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,�?? IEEE J. Quantum Electron. 38, 736-742 (2002).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am

P. Yeh, A. Yariv, and E. Marom, �??Theory of Bragg fiber,�?? J. Opt. Soc. Am. 68, 1196-1201 (1978).
[CrossRef]

Nature

J. C. Knight, �??Photonic crystal fibres,�?? Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, �??Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,�?? Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

C. M. Smith et al., �??Low-loss hollow-core silica/air photonic bandgap fibre,�?? Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

E. Chow et al., �??Three-dimensional control of light in a two-dimensional photonic crystal slab,�?? Nature 407, 983-986 (2000).
[CrossRef] [PubMed]

Opt. Express

S. G. Johnson et al., �??Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers.�?? Opt. Express 9, 748-779 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748</a>
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Science

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, �??Photonic band gap guidance in optical fibers,�?? Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

R. F. Cregan et al., �??Single-mode photonic band gap guidance of light in air,�?? Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, �??Stimulated Raman scattering in hydrogenfilled hollow-core photonic crystal fibres,�?? Science 298, 399-402 (2002).
[CrossRef] [PubMed]

D. G. Ouzounov et al., �??Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,�?? Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Other

A. Yariv, and P. Yeh, Optical Waves in Crystals, (Wiley, New York, 1984).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, New Jersey, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematics of a hollow-core Bragg fiber. The refractive index and the thickness of the high (low) index cladding layer are respectively nh and Lh (nl and Ll ). Photons zigzag within the hollow-core with an incident angle θ and form a propagating mode. ω/c is the vacuum wave vector. β is the propagation constant. (b) Under the asymptotic limit, the Bragg fiber cladding layers can be well approximated by a planar Bragg stack with the same parameters. The photon wave vectors (ω/c and β) also correspond to those shown in (a).

Fig. 2.
Fig. 2.

In (a) and (b), we respectively give the loss and dispersion of the TE01, TM01, and MP11 mode of a Bragg fiber with four cladding pairs, where we use nh =1.45, Lh =0.37µm, nl =1.0, Ll =4.10µm. The shaded area in (b) indicates the existence of propagating modes in the fiber cladding.

Fig. 3.
Fig. 3.

The scanning electron microscope (SEM) images of the OD90 sample cross-section. In (a) and (b), we respectively show the image of the overall structure and the cladding structure.

Fig. 4.
Fig. 4.

(a) The experimental transmission spectra of the OD120, 115, 110, 105, 100, 90, and 80 µm samples. (b) The experimental mode profile in the OD90 sample at a wavelength of 1060 nm. (c) The image of the output facet of the OD105 sample with white light input.

Fig. 5.
Fig. 5.

The theoretical loss (a) and dispersion (b) of the TE01, TM01, and MP11 mode in the OD90 sample. In calculations, we use a hollow-core radius of 10 µm (determined from SEM micrographs). The thicknesses of the inner, middle, and outer air layers are approximately 2.40, 2.27, and 2.27 µm, respectively. The thicknesses of inner, middle, and outer silica rings are 0.22, 0.28, and 0.28 µm, respectively. In calculating the cladding band diagram in (b), we assume the thickness of the silica and the air layers to be 0.28 µm and 2.27 µm, respectively. The shaded region in (b) indicates the existence of propagating modes in the fiber cladding layers.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E = A N e i k h ( y y N ) + B N e i k h ( y y N ) ,
k h = ( n h ω c ) 2 β 2 ,
[ A N + 1 B N + 1 ] = [ a b c d ] [ A N B N ] ,
a = e i k h L h [ cos ( k l L l ) i k l 2 + k h 2 2 k l k h sin ( k l L l ) ] ,
b = i k l 2 k h 2 2 k l k h e i k h L h sin ( k l L l ) ,
c = i k l 2 k h 2 2 k l k h e i k h L h sin ( k l L l ) ,
d = e i k h L h [ cos ( k l L l ) + i k l 2 + k h 2 2 k l k h sin ( k l L l ) ] ,
D TE = n l 2 sin 2 θ n h 2 sin 2 θ .
D TM = min [ n l 4 n h 4 n h 2 sin 2 θ n l 2 sin 2 θ , n h 4 n l 4 n l 2 sin 2 θ n h 2 sin 2 θ ] .

Metrics