Abstract

In this paper, we present a scheme for extracting a 10GHz clock from the 80Gb/s optical time division multiplexed (OTDM) return to zero (RZ) data stream. The proposed clock recovery is based on the offset locking technique. By using the input data composed of a repeating “10100000” pattern, residue jitter free operation for clock recovery is demonstrated. The method utilizes a LiNbO3 Mach-Zehnder (MZ) intensity modulator for cross-correlation detections.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Yamamoto, E. Yoshida, and M. Nakazawa, �??Ultra-fast nonlinear optical loop mirror for demultiplexing 640Gb/s TDM signals,�?? Electron. Lett. 34, 1013-1014, (1998)
    [CrossRef]
  2. R. Hess, M. Caraccia-Gross, W. Vogt, E. Gamper, P.A. Besse, M. Duelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K.S. Jepsen, K.E. Stubkjaer, and S. Bouchoule, �??All optical demultiplexing of 80 to 10Gb/s signals with monolithic integrated high-performance Mach-Zehnder interferometer,�?? IEEE Photon. Technol. Lett. 10, 165-167, (1998)
    [CrossRef]
  3. S. Kawanishi, �??Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,�?? IEEE J. Quantum Electron. 34, 2064-2079, (1998)
    [CrossRef]
  4. Y. Li, C. Kim, G. Li, Y. Kaneko, R.L. Jungerman, and O. Buccafusca, �??Wavelength and polarization insensitive all-optical clock recovery from 96Gb/s data by using a two-section gain-coupled DFB laser,�?? IEEE Photon. Technol. Lett. 15, 590-592, (2003)
    [CrossRef]
  5. E. Tangdiongga, J. Turkiewicz, G. Khoe, and H. De Waardt, �??Clock recovery by a fiber ring laser employing a linear optical amplifier,�?? IEEE Photon. Technol. Lett. 16, 611-613, (2004)
    [CrossRef]
  6. S. Kawanishi, and M. Saruwatari, �??Ultra-high-speed PLL-type clock recovery circuit based on all-optical gain modulation in traveling-wave laser-diode amplifier,�?? J. Lightwave Technol. 11, 3123-2129, (1993)
    [CrossRef]
  7. O. Kamatani, and S. Kawanishi, �??Ultrahigh-speed clock recovery with phase-lock-loop based on four-wave mixing in a traveling wave laser diode amplifier,�?? J. Lightwave Technol. 14, 1757-1767, (1996)
    [CrossRef]
  8. D. Tong, B. Mikkelsen, T. Nielsen, K. Dreyer, and J. Johnson, �??Optoelectronic phase-locked loop with balanced photodetection for clock recovery in high-speed optical time-division-multiplexed systems,�?? IEEE Photon. Technol. Lett. 12, 1064-1066, (2000)
    [CrossRef]
  9. C. Dorrer, and I. Kang, �??Simultaneous temporal characterization of telecommunication optical pulses and modulators by use of spectrograms,�?? Opt. Lett. 27, 1315-1317, (2002)
    [CrossRef]
  10. F. Cisternino, R. Girardi, R. Calvani, E. Riccardi, P. Garino, and S. Romisch, �??A regenerative prescaled clock recovery for high-bit-rate OTDM systems,�?? Opt. Fiber Technol. 5, 260-274, (1999)
    [CrossRef]

Electron. Lett. (1)

T. Yamamoto, E. Yoshida, and M. Nakazawa, �??Ultra-fast nonlinear optical loop mirror for demultiplexing 640Gb/s TDM signals,�?? Electron. Lett. 34, 1013-1014, (1998)
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Kawanishi, �??Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,�?? IEEE J. Quantum Electron. 34, 2064-2079, (1998)
[CrossRef]

IEEE Photon. Technol. Lett. (4)

Y. Li, C. Kim, G. Li, Y. Kaneko, R.L. Jungerman, and O. Buccafusca, �??Wavelength and polarization insensitive all-optical clock recovery from 96Gb/s data by using a two-section gain-coupled DFB laser,�?? IEEE Photon. Technol. Lett. 15, 590-592, (2003)
[CrossRef]

E. Tangdiongga, J. Turkiewicz, G. Khoe, and H. De Waardt, �??Clock recovery by a fiber ring laser employing a linear optical amplifier,�?? IEEE Photon. Technol. Lett. 16, 611-613, (2004)
[CrossRef]

R. Hess, M. Caraccia-Gross, W. Vogt, E. Gamper, P.A. Besse, M. Duelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K.S. Jepsen, K.E. Stubkjaer, and S. Bouchoule, �??All optical demultiplexing of 80 to 10Gb/s signals with monolithic integrated high-performance Mach-Zehnder interferometer,�?? IEEE Photon. Technol. Lett. 10, 165-167, (1998)
[CrossRef]

D. Tong, B. Mikkelsen, T. Nielsen, K. Dreyer, and J. Johnson, �??Optoelectronic phase-locked loop with balanced photodetection for clock recovery in high-speed optical time-division-multiplexed systems,�?? IEEE Photon. Technol. Lett. 12, 1064-1066, (2000)
[CrossRef]

J. Lightwave Technol. (2)

S. Kawanishi, and M. Saruwatari, �??Ultra-high-speed PLL-type clock recovery circuit based on all-optical gain modulation in traveling-wave laser-diode amplifier,�?? J. Lightwave Technol. 11, 3123-2129, (1993)
[CrossRef]

O. Kamatani, and S. Kawanishi, �??Ultrahigh-speed clock recovery with phase-lock-loop based on four-wave mixing in a traveling wave laser diode amplifier,�?? J. Lightwave Technol. 14, 1757-1767, (1996)
[CrossRef]

Opt. Fiber Technol. (1)

F. Cisternino, R. Girardi, R. Calvani, E. Riccardi, P. Garino, and S. Romisch, �??A regenerative prescaled clock recovery for high-bit-rate OTDM systems,�?? Opt. Fiber Technol. 5, 260-274, (1999)
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup for the phase locked loop.

Fig. 2.
Fig. 2.

Digital scope trace of the input data pattern “10100000” as triggered by the recovered clock (left) and the original clock (right).

Fig. 3.
Fig. 3.

The RF spectrum of the LO signal (left) and the RF signal (right)) at 8 Δf frequency for 80Gb/s clock recovery. Please note that Δf has been chosen to be 2.5MHz.

Fig. 4.
Fig. 4.

The RF spectrum of the recovered clock (left) and the original clock (right) for the 80Gb/s clock recovery.

Metrics