Abstract

Intermodal interference in photonic crystal fibres, single mode over long lengths, is measured over a short length. Akin to conventional fibres, this poses a potential problem for practical device utilisation of photonic crystal fibres. We note that given the existing widespread fabrication capability of this fibre and indications that some commercial use in devices will come to fruition, the need for standardising measurement techniques, analogous to ITU standards for conventional fibre, specific to photonic crystal fibres will be required.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J.L.Archambault, R.J.Black, J.Bures, F.Gonthier, S.Lacroix and C.Saravanos,"Fiber core profile characterization by measuring group velocity equalization wavelengths," IEEE Photon. Technol. Lett. 3, 351-353 (1991)
    [CrossRef]
  2. P.Hlubina, "The mutual interference of modes of a few-mode fiber waveguide analysed in the frequency domain," J. Mod. Optics 42, 2385-2399 (1995)
    [CrossRef]
  3. R.Posey, L.Phillips, D.Diggs, A.Sharma,"LP01-LP02 interference using a spectrally extended light source: measurement of the non-step-refractive-index profile of optical fibers," Opt. Lett. 21, 1357-1359 (1996)
    [CrossRef] [PubMed]
  4. J.Canning, A.L.G.Carter, "Modal interferometer for in situ measurement of induced core index change in optical fibers," Opt. Lett. 22, 561-563 (1997)
    [CrossRef] [PubMed]
  5. I.Turek, I.Martin�?ek, R.Stránsky, "Interference of modes in optical fibers," Opt.Eng. 39, 1304-1309 (2000)
    [CrossRef]
  6. I.Turek, I.Martin�?ek, D.Ká�?ik, P.Peterka, K.Grondžák, �??Intermodal interference as a tool for optical fibre diagnostics�?? in Recent Res.Devel. in Optical Eng editor S.G.Pandalai, 5(2003), pp.61-81, Trivandrum, India
  7. R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.St.J. Russell et al., �??Single-mode photonic band gap guidance of light in air,�?? Science 285, 1537-39 (1999)
    [CrossRef] [PubMed]
  8. J. Canning, E. Buckley, K. Lyytikainen, �??Propagation in air by field superposition of scattered light within a Fresnel fibre�??, Opt. Lett. 28 (4), 230-232 (2003)
    [CrossRef] [PubMed]
  9. J. Canning, E. Buckley, K. Lyytikainen, �??Multiple Source Generation using Air-Structured Optical Waveguides for Optical Field Shaping and Transformation Within and Beyond the Waveguide,�?? Opt. Express 11 (4), 347-358 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-4-347">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-4-347</a>
    [CrossRef] [PubMed]
  10. K. Lyytikäinen, J. Canning, J. Digweed and J. Zagari, �??Geometry control of air-silica structured optical fibres using pressurisation,�?? Proceedings of International Microwave and Optoelectronics Conference, Parana, Brazil, Sept 20-23, 2 (2003), pp.1001-5
  11. International Telegraph and Telephone Consultative Committee, Transmission Media Characteristics, Vol. III �?? Fascicle 111.3, Recommendations G.601-G.654 (International Telecommunications Union, ITU, Geneva, 1988)
  12. M.D. Nielsen, J.R. Folkenberg, N.A. Mortensen and A. Bjarklev, "Bandwidth comparison of photonic crystal fibers and conventional single-mode fibers," Opt. Express 12, 430-5 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-430">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-430</a>
    [CrossRef] [PubMed]
  13. R.Guobin, W.Zhi, L.Shuqin and J.Shuisheng, �??Mode classification and degeneracy in photonic crystal fibers,�?? Opt. Express 11, 1310-21 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-11-1310">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-11-1310</a>
    [CrossRef] [PubMed]
  14. A. Ferrando, E. Silvestre, J.J. Miret, P. Andres and M.V. Andres, �??Vector description of high-order modes in photonic crystal fibers,�?? J. Opt. Soc. Am. A 17 (7), 1333-40 (2000)
    [CrossRef]
  15. N.A. Issa and L. Poladian, �??Vector wave expansion method for leaky modes of microstructured optical fibres,�?? J. Lightwave Tech. 21, 1005-12 (2003)
    [CrossRef]

IEEE Photon. Technol. Lett. (1)

J.L.Archambault, R.J.Black, J.Bures, F.Gonthier, S.Lacroix and C.Saravanos,"Fiber core profile characterization by measuring group velocity equalization wavelengths," IEEE Photon. Technol. Lett. 3, 351-353 (1991)
[CrossRef]

International Microwave & Optoelect. (1)

K. Lyytikäinen, J. Canning, J. Digweed and J. Zagari, �??Geometry control of air-silica structured optical fibres using pressurisation,�?? Proceedings of International Microwave and Optoelectronics Conference, Parana, Brazil, Sept 20-23, 2 (2003), pp.1001-5

J. Lightwave Tech. (1)

N.A. Issa and L. Poladian, �??Vector wave expansion method for leaky modes of microstructured optical fibres,�?? J. Lightwave Tech. 21, 1005-12 (2003)
[CrossRef]

J. Mod. Optics (1)

P.Hlubina, "The mutual interference of modes of a few-mode fiber waveguide analysed in the frequency domain," J. Mod. Optics 42, 2385-2399 (1995)
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (3)

Opt. Lett. (3)

Opt.Eng. (1)

I.Turek, I.Martin�?ek, R.Stránsky, "Interference of modes in optical fibers," Opt.Eng. 39, 1304-1309 (2000)
[CrossRef]

Recent Res.Devel. in Optical Eng (1)

I.Turek, I.Martin�?ek, D.Ká�?ik, P.Peterka, K.Grondžák, �??Intermodal interference as a tool for optical fibre diagnostics�?? in Recent Res.Devel. in Optical Eng editor S.G.Pandalai, 5(2003), pp.61-81, Trivandrum, India

Science (1)

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.St.J. Russell et al., �??Single-mode photonic band gap guidance of light in air,�?? Science 285, 1537-39 (1999)
[CrossRef] [PubMed]

Other (1)

International Telegraph and Telephone Consultative Committee, Transmission Media Characteristics, Vol. III �?? Fascicle 111.3, Recommendations G.601-G.654 (International Telecommunications Union, ITU, Geneva, 1988)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Triangular structure of the PCF fibre.

Fig. 2.
Fig. 2.

Photonic crystal fibre and standard fibre arrangement for observing modal interference.

Fig. 3.
Fig. 3.

Spectral dependencies of intermodal interference in wavelength area 700–1050nm for two positions of the detecting fibre given in fig.2. The length of the fibre was 7.3 cm.

Fig. 4.
Fig. 4.

Intermodal interference in 72 cm long sample of standard telecommunication fibre.

Fig. 5.
Fig. 5.

Signal dependencies (solid) in wavelength region 1050–1150nm and 1450–1540nm and harmonic functions (dotted) with periods 12.1nm and 12.7nm.

Fig. 6.
Fig. 6.

Measured and calculated periodicity of the interference signal for the PCF as a function of wavelength.

Fig. 7.
Fig. 7.

(a) Simulated intensity profile of the fundamental mode. (b, c) Example intensity profiles resembling those observed in the experiment for light guided in higher order modes. They have been simulated by taking simple linear superposition of the TE01, HE21 and TM01 modes. Such profiles are expected to largely retain this appearance for approximately half the spectral period of the intermodal interference between the higher order modes, ie. ~350nm at 1.3µm or over 6cm of fibre. This is much larger than the measured period for interference between the fundamental and higher order modes and is close to the length of fibre used.

Metrics