Abstract

The performance of bi-periodic arrays of gold nano-particles for molecular sensing applications is studied using the Fourier Modal Method (FMM). We show that the electromagnetic coupling between the particles can be optimized to increase their sensitivity to a weak change of the shallow dielectric environment. Especially, arrays whose elementary cell consists of a dimer of two closely packed particles are found to be at least three times more sensitive than single particle arrays.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Okamoto, I. Yamaguchi and T. Kobayashi, �??Local plasmon sensor with gold colloid monolayers deposited upon glass substrates,�?? Opt. Lett. 25, 372 (2000).
    [CrossRef]
  2. A. D. McFarland and R. P. Van Duyne, �??Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,�?? Nano Lett. 3, 1057 (2003).
    [CrossRef]
  3. J. J. Mock, D. R. Smith, and S. Schultz, �??Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,�?? Nano Lett. 3, 485 (2003).
    [CrossRef]
  4. G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, and J. Feldmann, �??Biomolecular recognition based on single gold nanoparticle light scattering,�?? Nano Lett. 3, 935 (2003).
    [CrossRef]
  5. H. Xu, J. Aizpurua, M. K¨all, and P. Apell, �??Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,�?? Phys. Rev. E 62, 4318 (2000).
    [CrossRef]
  6. K. Li, M. I. Stockman, and D. J. Bergman, �??Self-similar chain of metal nanospheres as an efficient Nanolens,�?? Phys. Rev. Lett. 91, 227402 (2003).
    [CrossRef] [PubMed]
  7. W. L. Barnes, A. Dereux, and T. W. Ebbesen, �??Surface plasmon subwavelength optics,�?? Nature (London) 423, 824 (2003).
    [CrossRef]
  8. M. Meier, A. Wokaum, and P. F. Liao, �??Enhanced fields on rough surfaces: dipolar interaction among particles of sizes exceeding the Rayleigh limit,�?? J. Opt. Soc. Am. B 2, 931 (1985).
    [CrossRef]
  9. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, �??Metal Nanoparticle Gratings: Influence of Dipolar Particle Interaction on the Plasmon Resonance,�?? Phys. Rev. Lett. 84, 4721 (2000).
    [CrossRef] [PubMed]
  10. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, �??Nanoparticle Optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,�?? J. Chem. Phys. B 107, 7337 (2003).
    [CrossRef]
  11. N. Felidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salermo, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, �??Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,�?? Phys. Rev. B 65, 075419 (2002).
    [CrossRef]
  12. D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A.Wei, �??Resonant field enhancements from metal nanoparticle arrays,�?? Nano Lett. 4, 153 (2003).
    [CrossRef]
  13. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, �??Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,�?? Phys. Rev. Lett. 92, 183901 (2004).
    [CrossRef]
  14. L. Li, �??Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,�?? J. Opt. Soc. Am. A 13, 1024 (1996).
    [CrossRef]
  15. L. Li, �??Use of Fourier series in the analysis of discontinuous periodic structures,�?? J. Opt. Soc. Am. A 13, 1870 (1996).
    [CrossRef]
  16. L. Li, �??New formulation of the Fourier modal method for crossed surface-relief gratings,�?? J. Opt. Soc. Am. A 14, 2758 (1997).
    [CrossRef]
  17. M. Nevière and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, New York, 2003).
  18. E. D. Palik, Handbook of optical constants of solids (Academic Press, New York, 1985).
  19. J. P. Kottmann and O. J. F. Martin, �??Plasmon resonant coupling in metallic nanowires,�?? Opt. Express 8, 655 (2001) <a href="http://opticsexpress.org/abstract.cfm?URI=OPEX-8-12-655">http://opticsexpress.org/abstract.cfm?URI=OPEX-8-12-655</a>.
    [CrossRef] [PubMed]
  20. H. Xu and M. Käll, �??Surface-Plasmon-Enhanced Optical Forces in silver nanoaggregates,�?? Phys. Rev. Lett. 89, 246802 (2002).
    [CrossRef] [PubMed]
  21. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, �??Optical properties of two interacting gold nanoparticles,�?? Opt. Commun. 220, 137 (2003).
    [CrossRef]
  22. J. P. Kottmann and O. J. F. Martin, �??Retardation-induced plasmon resonances in coupled nanoparticles,�?? Opt. Lett. 26, 1096 (2001).
    [CrossRef]
  23. E. Hao and G. C. Schatz, �??Electromagnetic fields around silver nanoparticles and dimers�??, J. Chem. Phys. 120, 357 (2004).
    [CrossRef] [PubMed]

J. Chem. Phys. (1)

E. Hao and G. C. Schatz, �??Electromagnetic fields around silver nanoparticles and dimers�??, J. Chem. Phys. 120, 357 (2004).
[CrossRef] [PubMed]

J. Chem. Phys. B (1)

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, �??Nanoparticle Optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,�?? J. Chem. Phys. B 107, 7337 (2003).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. B (1)

Nano Lett. (4)

A. D. McFarland and R. P. Van Duyne, �??Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,�?? Nano Lett. 3, 1057 (2003).
[CrossRef]

J. J. Mock, D. R. Smith, and S. Schultz, �??Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,�?? Nano Lett. 3, 485 (2003).
[CrossRef]

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, and J. Feldmann, �??Biomolecular recognition based on single gold nanoparticle light scattering,�?? Nano Lett. 3, 935 (2003).
[CrossRef]

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A.Wei, �??Resonant field enhancements from metal nanoparticle arrays,�?? Nano Lett. 4, 153 (2003).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, �??Surface plasmon subwavelength optics,�?? Nature (London) 423, 824 (2003).
[CrossRef]

Opt. Commun. (1)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, �??Optical properties of two interacting gold nanoparticles,�?? Opt. Commun. 220, 137 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (1)

N. Felidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salermo, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, �??Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,�?? Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Phys. Rev. E (1)

H. Xu, J. Aizpurua, M. K¨all, and P. Apell, �??Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,�?? Phys. Rev. E 62, 4318 (2000).
[CrossRef]

Phys. Rev. Lett. (4)

K. Li, M. I. Stockman, and D. J. Bergman, �??Self-similar chain of metal nanospheres as an efficient Nanolens,�?? Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, �??Metal Nanoparticle Gratings: Influence of Dipolar Particle Interaction on the Plasmon Resonance,�?? Phys. Rev. Lett. 84, 4721 (2000).
[CrossRef] [PubMed]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, �??Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,�?? Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef]

H. Xu and M. Käll, �??Surface-Plasmon-Enhanced Optical Forces in silver nanoaggregates,�?? Phys. Rev. Lett. 89, 246802 (2002).
[CrossRef] [PubMed]

Other (2)

M. Nevière and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, New York, 2003).

E. D. Palik, Handbook of optical constants of solids (Academic Press, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(A) Schematic description of the studied structure formed by a bi-periodic arrangement of gold nanoparticles lying onto a glass substrate. The particles have a cylindrical shape with 100 nm diameter base and 20 nm height. (B) Cross-section through one period of the arrangement when covered with a thin layer (thickness e) of optical index 1.4.

Fig. 2.
Fig. 2.

(A) Extinction spectra of an infinite gold particle matrix for different values of the period D. Each curve has been normalized by the corresponding structure filling factor f (B) Map of the electric near-field intensity calculated 5 nm above one of the particles for the case where D=300 nm. Note that all the field maps are normalized with respect to the incident field amplitude

Fig. 3.
Fig. 3.

Evolution of the extinction spectrum of a gold particle matrix as a function of the thickness e of a thin dielectric covering layer (n=1.4)

Fig. 4.
Fig. 4.

Evolution of the extinction spectrum of a dimer matrix with the gap distance δ. The incident field is polarized along X

Fig. 5.
Fig. 5.

(A) Map of the electric near-field intensity calculated 5 nm above one of the dimers. Left: δ=4 nm, D=300 nm and λ=635 nm. Middle: idem for δ=0 nm at λ=575 nm. Right: idem for δ=0nm at λ=720 nm. (B) Extinction spectra of a dimer matrix (D=300 nm, δ=0 nm) as a function of the thickness e of the dielectric layer on top of the dimers.

Metrics