Abstract

An implementation of optical differential 8-level phase-shift keying (OD8PSK) is proposed for spectrally efficient high capacity long-haul optical fiber transmission systems. Interferometric demodulation and direct detection at the receiver yield three output binary sequences identical to the three input binary sequences. This is accomplished by proper design of electrical encoding and optical encoding at the transmitter. Three optical encoding schemes are proposed with corresponding differential electrical encoding schemes. Numerical simulations are performed for a single channel transmission to evaluate the transmission performances of OD8PSK systems.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. A. Griffin and A. C. Carter, �??Optical differential quadrature phase-shift key (oDQPSK) for high capacity optical transmission,�?? in Optical Fiber Communications Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), Paper WX6.
  2. H. Kim and R.-J. Essiambre, �??Transmission of 8 �? 20 Gb/s DQPSK signals over 310-km SMF with 0.8-b/s/Hz spectral efficiency,�?? IEEE Photon. Technol. Lett. 15, 769-771 (2003).
    [CrossRef]
  3. P. S. Cho, V. S. Grigoryan, Y. A. Godin, A. Salamon, and Y. Achiam, �??Transmission of 25-Gb/s RZ-DQPSK signals with 25-GHz channel spacing over 1000 km of SMF-28 fiber,�?? IEEE Photon. Technol. Lett. 15, 473-475 (2003).
    [CrossRef]
  4. S. Hayase, N. Kikuchi, K. Sekein, and S. Sasaki, �??Proposal of 8-state per symbol (binary ASK and QPSK) 30-Gbit/s optical modulation/demodulation scheme,�?? in European Conference on Optical Communication (The Institute of Electrical Engineers, London, United Kingdom, 2003), Paper TH2.6.4.
  5. J. Hansryd, J. van Howe, and C. Xu, �??Nonlinear crosstalk and compensation in quaternary differential-phase amplitude-shift-keying transmission,�?? in Optical Fiber Communications Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2004), Paper MF64.
  6. X. Liu, �??Nonlinear effect in phase shift keyed transmission,�?? in Optical Fiber Communications Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2004), Paper ThM4.
  7. B. Sklar, Digital Communications: Fundamentals and Applications (Prentice Hall PTR, Upper Saddle River, 2001).
  8. X. Wei, X. Liu, and C. Xu, �??Numerical simulation of the SPM penalty in a 10-Gb/s RZ-DPSK system,�?? IEEE Photon. Technol. Lett. 15, 1636-1638 (2003).
    [CrossRef]
  9. X. Liu, X. Wei, R. E. Slusher, and C. J. McKinstrie, �??Improving transmission performance in differential phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation,�?? Opt. Lett. 15, 1616-1618 (2004).
  10. C. Xu and X. Liu, �??Postnonlinearity compensation with data-driven phase modulators in phase-shift keying transmission,�?? Opt. Lett. 15, 1619-1621 (2004).

ECOC 2003 (1)

S. Hayase, N. Kikuchi, K. Sekein, and S. Sasaki, �??Proposal of 8-state per symbol (binary ASK and QPSK) 30-Gbit/s optical modulation/demodulation scheme,�?? in European Conference on Optical Communication (The Institute of Electrical Engineers, London, United Kingdom, 2003), Paper TH2.6.4.

IEEE Photon. Technol. Lett. (3)

H. Kim and R.-J. Essiambre, �??Transmission of 8 �? 20 Gb/s DQPSK signals over 310-km SMF with 0.8-b/s/Hz spectral efficiency,�?? IEEE Photon. Technol. Lett. 15, 769-771 (2003).
[CrossRef]

P. S. Cho, V. S. Grigoryan, Y. A. Godin, A. Salamon, and Y. Achiam, �??Transmission of 25-Gb/s RZ-DQPSK signals with 25-GHz channel spacing over 1000 km of SMF-28 fiber,�?? IEEE Photon. Technol. Lett. 15, 473-475 (2003).
[CrossRef]

X. Wei, X. Liu, and C. Xu, �??Numerical simulation of the SPM penalty in a 10-Gb/s RZ-DPSK system,�?? IEEE Photon. Technol. Lett. 15, 1636-1638 (2003).
[CrossRef]

OFCC 2002 (1)

R. A. Griffin and A. C. Carter, �??Optical differential quadrature phase-shift key (oDQPSK) for high capacity optical transmission,�?? in Optical Fiber Communications Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), Paper WX6.

OFCC 2004 (2)

J. Hansryd, J. van Howe, and C. Xu, �??Nonlinear crosstalk and compensation in quaternary differential-phase amplitude-shift-keying transmission,�?? in Optical Fiber Communications Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2004), Paper MF64.

X. Liu, �??Nonlinear effect in phase shift keyed transmission,�?? in Optical Fiber Communications Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2004), Paper ThM4.

Opt. Lett. (2)

X. Liu, X. Wei, R. E. Slusher, and C. J. McKinstrie, �??Improving transmission performance in differential phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation,�?? Opt. Lett. 15, 1616-1618 (2004).

C. Xu and X. Liu, �??Postnonlinearity compensation with data-driven phase modulators in phase-shift keying transmission,�?? Opt. Lett. 15, 1619-1621 (2004).

Other (1)

B. Sklar, Digital Communications: Fundamentals and Applications (Prentice Hall PTR, Upper Saddle River, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of OD8PSK transmission system

Fig. 2.
Fig. 2.

Schematic diagram of optical D8PSK demodulator and receiver

Fig. 3.
Fig. 3.

Schematic diagrams of optical encoders for OD8PSK modulation

Fig. 4.
Fig. 4.

Schematic diagram of OD8PSK transmission system for simulations (PC-DCF: Predispersion compensation)

Fig. 5.
Fig. 5.

Simulation results: (a) Differential phase as a function of differential amplitude (b) Differential phase Q factor as a function of total dispersion.

Fig. 6.
Fig. 6.

Simulation results: (a) SER as a function of the number of span, (b) Differential phase Q factor as a function of laser linewidth

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I = d ¯ ( i a ¯ + i ¯ a ) q ¯ + ( d ¯ q + d c ¯ ) ( i b ¯ + i ¯ b ) + d [ ( i q ¯ + i ¯ q ) a ¯ + ( i q + i ¯ q ¯ ) a ] c Q = [ ( q c ¯ + ( q d ¯ + q ¯ d ) c ] ( a b + a ¯ b ¯ ) + [ ( q ¯ c + ( q d + q ¯ d ¯ ) c ¯ ] ( a b ¯ + a ¯ b ) D = ( d c ¯ + d ¯ c ) ( a b + a ¯ b ¯ ) + ( d c + d ¯ c ¯ ) ( a b ¯ + a ¯ b )
I = d ¯ [ i ( q ¯ a ¯ + q b ¯ ) + i ¯ ( q a + q ¯ b ) ] + d [ ( i b ¯ + i ¯ b ) c ¯ + ( q a + q ¯ a ¯ ) c ] Q = d ¯ [ i ( q a ¯ + q ¯ b ) + i ¯ ( q ¯ a + q b ¯ ) ] + d [ ( i a ¯ + i ¯ a ) c + ( q b ¯ + q ¯ b ) c ¯ ] D = ( d c ¯ + d ¯ c ) ( a b + a ¯ b ¯ ) + ( d c + d ¯ c ¯ ) ( a b ¯ + a ¯ b )
I = [ ( q ¯ a ¯ b + q a b ¯ ) + ( i d + q d ¯ ) a b + ( i ¯ d + q ¯ d ¯ ) a ¯ b ¯ ] c + [ ( i a ¯ b ¯ + i ¯ a b ) + ( i ¯ d + q d ¯ ) a b ¯ + ( i d + q ¯ d ¯ ) a ¯ b ] c ¯ Q = [ ( i a b ¯ + i ¯ a ¯ b ) + ( i ¯ d + q ¯ d ¯ ) a b + ( i d + q d ¯ ) a ¯ b ¯ ] c + [ ( q ¯ a b + q a ¯ b ¯ ) + ( i ¯ d + q d ¯ ) a b ¯ + ( i d + q ¯ d ¯ ) a ¯ b ] c ¯ D = [ ( i q ¯ + i q ) ( a ¯ b ¯ + a b ) + ( q d + q ¯ d ¯ ) ( a ¯ b + a b ¯ ) ] c + [ ( i q + i ¯ q ¯ ) ( a ¯ b + a b ¯ ) + ( i d + i ¯ d ) ( a ¯ b ¯ + a b ) ] c ¯

Metrics