Abstract

Coherent control based on a feedback-controlled self-learning loop was applied to enhance the ratio of two-photon (2P) fluorescence from a fluorescent label enhanced green fluorescence protein and three-photon (3P) fluorescence from the essential amino acid L-Tryptophan. The two biosamples were mixed in a buffer solution contained in a quartz cuvette and exposed to near-infrared laser pulses from a femtosecond (fs) oscillator. However, the enhancement of the 2P/3P fluorescence ratio was always accompanied by a significant loss of the valuable 2P fluorescence. To achieve a trade-off between the 2P/3P fluorescence ratio and the 2P fluorescence intensity, we then engineered the cost function in the selfl-earning algorithm. The optimal pulse shape obtained by use of the engineered cost function could be useful for 2P fluorescence imaging of living cells with reduced phototoxicity, because DNA and protein can be directly damaged by 3P absorption of fs laser according to an excitation band ~270nm.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, �??Two-photon laser scanning fluorescence microscopy,�?? Science 248, 73-76 (1990).
    [CrossRef] [PubMed]
  2. S. Maiti, J. B. Sher, R. M. Williams, R. W. Zipfel, and W. W. Webb, �??Measuring serotonin distribution in live cells with three-photon excitation,�?? Science 275, 530-532 (1997).
    [CrossRef] [PubMed]
  3. G. H. Patterson and D. W. Piston, �??Photobleaching in Two-Photon Excitation Microscopy,�?? Biophys. J. 78, 2159-2162 (2000).
    [CrossRef] [PubMed]
  4. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, �??Whither the future of controlling quantum phenomena?�?? Science 288, 824-828 (2000).
    [CrossRef] [PubMed]
  5. A. M. Weiner, �??Femtosecond pulse shaping using spatial light modulators,�?? Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  6. H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, and K. Midorikawa, �??Attenuation of photobleaching in two-photon excitation fluorescence from GFP with shaped excitation pulses,�?? Biophys. Biochem. Res. Commun. 311, 592-596 (2003).
    [CrossRef]
  7. K. Konig, P. T. C. So, W. W. Mantulin, and E. Gratton, �??Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes,�?? Opt. Lett. 22, 135-136 (1997).
    [CrossRef] [PubMed]
  8. V. Shafirovich, A. Dourandin, N. P. Luneva, C. Singh, F. Kirigin, and N. E. Geacintov, �??Multiphoton near-infrared femtosecond laser pulse-induced DNA damage with and without the photosensitizer Proflavine,�?? Photochem. Photobiol. 69, 265-274 (1999).
    [CrossRef] [PubMed]
  9. K. Konig, T. W. Becker, P. Fischer, I. Riemann, and K.-J. Halbhuber, �??Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,�?? Opt. Lett. 24, 113-115 (1999).
    [CrossRef]
  10. R. Y. Tsien, �??The green fluorescent protein,�?? Annu. Rev. Biochem. 67, 509-544 (1998).
    [CrossRef] [PubMed]
  11. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, 2nd Ed. (Cambridge Univ. Press, Cambridge, 1989), Chap. 10.
  12. R. J. Levis, G. M. Menkir, and H. Rabitz, �??Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses,�?? Science 292, 709-713 (2001).
    [CrossRef] [PubMed]
  13. T. Brixner, N. H. Damrauer, P. Niklaus and G. Gerber, �??Photoselective adaptive femtosecond quantum control in the liquid phase,�?? Nature 414, 57-60 (2001).
    [CrossRef] [PubMed]
  14. Y. Barad, H. Eisenbery, M. Horowitz, and Y. Silberberg, �??Nonlinear scanning laser microscopy by third harmonic generation,�?? Appl. Phys. Lett., 70, 922-924 (1997)
    [CrossRef]
  15. N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, �??Transform-limited pulses are not optimal for resonant multiphoton transitions,�?? Phys. Rev. Lett. 86, 47-50 (2001).
    [CrossRef] [PubMed]

Annu. Rev. Biochem. (1)

R. Y. Tsien, �??The green fluorescent protein,�?? Annu. Rev. Biochem. 67, 509-544 (1998).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

Y. Barad, H. Eisenbery, M. Horowitz, and Y. Silberberg, �??Nonlinear scanning laser microscopy by third harmonic generation,�?? Appl. Phys. Lett., 70, 922-924 (1997)
[CrossRef]

Biophys. Biochem. Res. Commun. (1)

H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, and K. Midorikawa, �??Attenuation of photobleaching in two-photon excitation fluorescence from GFP with shaped excitation pulses,�?? Biophys. Biochem. Res. Commun. 311, 592-596 (2003).
[CrossRef]

Biophys. J. (1)

G. H. Patterson and D. W. Piston, �??Photobleaching in Two-Photon Excitation Microscopy,�?? Biophys. J. 78, 2159-2162 (2000).
[CrossRef] [PubMed]

Nature (1)

T. Brixner, N. H. Damrauer, P. Niklaus and G. Gerber, �??Photoselective adaptive femtosecond quantum control in the liquid phase,�?? Nature 414, 57-60 (2001).
[CrossRef] [PubMed]

Opt. Lett. (2)

Photochem. Photobiol. (1)

V. Shafirovich, A. Dourandin, N. P. Luneva, C. Singh, F. Kirigin, and N. E. Geacintov, �??Multiphoton near-infrared femtosecond laser pulse-induced DNA damage with and without the photosensitizer Proflavine,�?? Photochem. Photobiol. 69, 265-274 (1999).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, �??Transform-limited pulses are not optimal for resonant multiphoton transitions,�?? Phys. Rev. Lett. 86, 47-50 (2001).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. M. Weiner, �??Femtosecond pulse shaping using spatial light modulators,�?? Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Science (4)

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, �??Whither the future of controlling quantum phenomena?�?? Science 288, 824-828 (2000).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, �??Two-photon laser scanning fluorescence microscopy,�?? Science 248, 73-76 (1990).
[CrossRef] [PubMed]

S. Maiti, J. B. Sher, R. M. Williams, R. W. Zipfel, and W. W. Webb, �??Measuring serotonin distribution in live cells with three-photon excitation,�?? Science 275, 530-532 (1997).
[CrossRef] [PubMed]

R. J. Levis, G. M. Menkir, and H. Rabitz, �??Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses,�?? Science 292, 709-713 (2001).
[CrossRef] [PubMed]

Other (1)

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, 2nd Ed. (Cambridge Univ. Press, Cambridge, 1989), Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the experimental setup for selective excitation between 2P and 3P fluorescence with engineered cost functions.

Fig. 2.
Fig. 2.

Ratio between the 2P and 3P fluorescence signals (blue line) and the 2P fluorescence (red line) as functions of x. The signals of the 2P and 3P fluorescence are normalized by those excited by FTL pulses and denoted by I 2p and I 3P , respectively.

Fig. 3.
Fig. 3.

SHG-FROG reconstructed temporal profiles (grid size is 64×64) of the shaped pulses obtained by using cost functions with (a) x=1, (b) x=1.5, (c) x=2, (d) x=3, (e) x=4, and (f) x=6. The red areas show the intensity profiles of the shaped pulses, and the blue lines show the temporal phases of the shaped pulses, respectively. The resulting FROG errors are 0.018, 0.015, 0.017, 0.017, 0.030 and 0.020 for Figs. (a) - (f), respectively.

Metrics