Abstract

We show through numerical simulations and experimental data that a fast and simple iterative loop known as the Fienup algorithm can be used to process the measured Maker-fringe curve of a nonlinear sample to retrieve the sample’s nonlinearity profile. This algorithm is extremely accurate for any profile that exhibits one or two dominant peaks, which covers a wide range of practical profiles, including any nonlinear film of crystalline or organic material (rectangular profiles) and poled silica, for which an excellent experimental demonstration is provided. This algorithm can also be applied to improve the accuracy of the nonlinearity profile obtained by an inverse Fourier transform technique.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. D. Maker, R. W. Terhune, M. Nisenhoff, and C. M. Savage, "Effects of dispersion and focusing on production of optical harmonics," Phys. Rev. Lett. 8, 21-22 (1962).
    [CrossRef]
  2. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Inverse Fourier transform technique to determine secondorder optical nonlinearity spatial profiles," Appl. Phys. Lett. 82, 1362-1364 (2003).
    [CrossRef]
  3. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Improved technique to determine second-order optical nonlinearity profiles using two different samples," Appl. Phys. Lett. 84, 681-683 (2004).
    [CrossRef]
  4. C. Corbari, O. Deparis, B. G. Klappauf and P. G. Kazansky, "Practical technique for measurement of second-order nonlinearity for poled glass," Electron. Lett. 39, 197-198 (2003).
    [CrossRef]
  5. J. R. Fienup, "Reconstruction of an object from the modulus of its Fourier transform," Opt. Lett. 3, 27-29 (1978).
    [CrossRef] [PubMed]
  6. T. F. Quatieri, Jr., and A. V. Oppenheim, "Iterative techniques for minimum phase signal reconstruction from phase or magnitude," IEEE Trans. Acoust., Speech, Signal Processing 29, 1187-1193 (1981).
    [CrossRef]
  7. M. Hayes, J. S. Lim, and A. V. Oppenheim, "Signal reconstruction from phase or magnitude," IEEE Trans. Acoust., Speech, Signal Processing 28, 672-680 (1980).
    [CrossRef]
  8. V. Oppenheim and R. W. Schafer, Digital Signal Processing, (Prentice Hall, 2002), Chap. 7.
  9. R. A. Myers, N. Mukerjkee, and S. R. J. Brueck, "Large second-order nonlinearity in poled fused silica," Opt. Lett. 16, 1732-1734 (1991).
    [CrossRef] [PubMed]
  10. Y. Quiquempois, P. Niay, M. Douay, and B. Poumellec, " Advances in poling and permanently induced phenomena in silica-based glasses," Current Opinion in Solid State & Materials Science 7, 89-95 (2003)
    [CrossRef]
  11. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Cylinder-assisted Maker-fringe technique," Electron. Lett. 39, 1834-1836 (2003).
    [CrossRef]
  12. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, Edward L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, are preparing a manuscript to be called "Detailed analysis of inverse Fourier transform techniques to uniquely infer second-order nonlinearity profile of thin films."
  13. M. Mukherjee, R. A. Myers, and S. R. J. Brueck, "Dynamics of second-harmonic generation in fused silica," J. Opt. Soc. Am. B 11, 665-669 (1994).
    [CrossRef]
  14. T. G. Alley, S. R. J. Brueck, and R. A. Myers, "Space charge dynamics in thermally poled fused silica," J. Non-Cryst. Solids. 242, 165-176 (1998).
    [CrossRef]
  15. D. Faccio, V. Pruneri, and P. G. Kazansky, "Dynamics of the second-order nonlinearity in thermally poled silica glass," Appl. Phys. Lett. 79, 2687-2689 (2001)
    [CrossRef]

Appl. Phys. Lett. (3)

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Inverse Fourier transform technique to determine secondorder optical nonlinearity spatial profiles," Appl. Phys. Lett. 82, 1362-1364 (2003).
[CrossRef]

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Improved technique to determine second-order optical nonlinearity profiles using two different samples," Appl. Phys. Lett. 84, 681-683 (2004).
[CrossRef]

D. Faccio, V. Pruneri, and P. G. Kazansky, "Dynamics of the second-order nonlinearity in thermally poled silica glass," Appl. Phys. Lett. 79, 2687-2689 (2001)
[CrossRef]

EEE Trans. Acoust., Speech, Signal Proce (1)

T. F. Quatieri, Jr., and A. V. Oppenheim, "Iterative techniques for minimum phase signal reconstruction from phase or magnitude," IEEE Trans. Acoust., Speech, Signal Processing 29, 1187-1193 (1981).
[CrossRef]

Electron. Lett. (2)

C. Corbari, O. Deparis, B. G. Klappauf and P. G. Kazansky, "Practical technique for measurement of second-order nonlinearity for poled glass," Electron. Lett. 39, 197-198 (2003).
[CrossRef]

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Cylinder-assisted Maker-fringe technique," Electron. Lett. 39, 1834-1836 (2003).
[CrossRef]

IEEE Trans. Acoust., Speech, Signal Proc (1)

M. Hayes, J. S. Lim, and A. V. Oppenheim, "Signal reconstruction from phase or magnitude," IEEE Trans. Acoust., Speech, Signal Processing 28, 672-680 (1980).
[CrossRef]

J. Non-Cryst. Solids. (1)

T. G. Alley, S. R. J. Brueck, and R. A. Myers, "Space charge dynamics in thermally poled fused silica," J. Non-Cryst. Solids. 242, 165-176 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

P. D. Maker, R. W. Terhune, M. Nisenhoff, and C. M. Savage, "Effects of dispersion and focusing on production of optical harmonics," Phys. Rev. Lett. 8, 21-22 (1962).
[CrossRef]

Solid State & Materials Science (1)

Y. Quiquempois, P. Niay, M. Douay, and B. Poumellec, " Advances in poling and permanently induced phenomena in silica-based glasses," Current Opinion in Solid State & Materials Science 7, 89-95 (2003)
[CrossRef]

Other (2)

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, Edward L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, are preparing a manuscript to be called "Detailed analysis of inverse Fourier transform techniques to uniquely infer second-order nonlinearity profile of thin films."

V. Oppenheim and R. W. Schafer, Digital Signal Processing, (Prentice Hall, 2002), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Flow chart of the iterative Fienup algorithm.

Fig. 2.
Fig. 2.

Examples of possible physical nonlinearity profiles that can be recovered from their FT magnitudes only by using the Fienup algorithm assuming zero initial FT phase.

Fig. 3.
Fig. 3.

The same buried-Gaussian profile as in Fig. 2 with uniform noise added (blue trace). The result of the recovery with 100 iterations is shown in red. The green curve is the difference between the original noisy profile and the recovered profile.

Fig. 4.
Fig. 4.

An arbitrarily three-peaked profile (solid blue curve) and the profile recovered (black dashed curve) with the Fienup algorithm after 100 iterations. The red curve shows the recovered profile when d(0) is increased to d(0)=10·max{d(z)}.

Fig. 5.
Fig. 5.

Measured MF curve of the poled sample (circles) compared with the theoretically computed MF curve of the processed nonlinearity profile.

Fig. 6.
Fig. 6.

Recovered FT phases with the two-sample technique (blue) and with the Fienup algorithm (green) assuming zero initial FT phase.

Fig. 7.
Fig. 7.

Nonlinearity profiles recovered with the two-sample technique and with the Fienup algorithm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n = 0 m 1 d min ( n ) 2 n = 0 m 1 d ( n ) 2

Metrics