Abstract

Free-running gain-switched Fabry-Perot laser diode is an appropriate incoherent broadband optical source for incoherent 2-dimensional optical code division multiple access. However, the mode partition noise (MPN) in the laser seriously degrades performance. We derived a bit error rate (BER) expression in the presence of MPN using the power spectra of the laser. The theory agreed with the experimental results. There was a power penalty and BER floor due to the MPN in the laser. Therefore, this scheme should be operated with a sufficiently large number of modes. At least 9 modes should be used for error-free transmission at 1 Gbit/s for the laser we investigated in this work.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. R. Prucnal, M. A. Santoro, and T. R. Fan, �??Spread spectrum fiber-optic local area network using optical processing,�?? J. Lightwave Technol. 4, 547-554 (1986).
    [CrossRef]
  2. J. A. Salehi, �??Code division multiple-access techniques in optical fiber networks, Part I: fundamental principles,�?? IEEE. Trans. Commun. 37, 824-842 (1989).
    [CrossRef]
  3. D. D. Sampson, G. J. Pendock, and R. A. Griffin, �??Photonic code-division multiple-access communications,�?? Fiber and Integrated Optics 16, 129-157 (1997).
    [CrossRef]
  4. J. A. Salehi, A. M. Weiner, and J. P. Heritage, �??Coherent ultrashort light pulse code-division multiple-access communication systems,�?? J. Lightwave Technol. 8, 478-491 (1990).
    [CrossRef]
  5. K. Kitayama, �??Code division multiplexing lightwave networks based upon optical code conversion,�?? IEEE J. Selec. Areas Commun. 16, 1309-1319 (1998).
    [CrossRef]
  6. X. Wang and K. Kitayama, �??Analysis of beat noise in coherent and incoherent time-spreading OCDMA,�?? J. Lightwave Technol. (to be published).
  7. L. Tanc�?vski and I. Andonovic, �??Hybrid wavelength hopping/time spreading schemes for use in massive optical networks with increased security,�?? IEEE J. Lightwave Tech. 14, 2636-2646 (1996).
    [CrossRef]
  8. X. Wang and K. T. Chan, �??A sequentially self-seeding Fabry-Perot laser for two-dimensional encoding/decoding optical pulse,�?? IEEE J. Quantum Electron. 39, 83-90 (2003).
    [CrossRef]
  9. X. Wang, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, �??Novel temporal/spectral coding technique based on fiber Bragg gratings for fiber optic CDMA application,�?? in Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication. OFC/IOOC '99. Technical Digest, (Optical Society of America, San Diego, 1999), pp. 341-343.
    [CrossRef] [PubMed]
  10. H. Ben Jaafar, S. LaRochelle, P. -Y. Cortes, and H. Fathallah, �??1.25Gbit/s transmission of optical FFHOCDMA signals over 80km with 16 users,�?? Optical Fiber Communication Conference and Exhibit, 2001. OFC 2001 Technical Digest, (Optical Society of America, Anaheim, 2001), pp.TuV3-1 - TuV3-3.
  11. N. Wada, H. Sotobayashi, and K. Kitayama, �??2.5 Gbit/s time-spread/wavelength-hop optical code division multiplexing using fibre Bragg grating with supercontinuum light source,�?? Electron. Lett. 36, 815�??817 (2000).
    [CrossRef]
  12. X. Wang, K. L. Lee, C. Shu, and K. T. Chan, �??Multiwavelength self-seeded Fabry-Perot laser with subharmonic pulse-gating for two-dimensional fiber optic-CDMA,�?? IEEE Photon. Technol. Lett. 13, 1361-1363 (2000).
    [CrossRef]
  13. H. Ito, H. Yokoyama, S. Murata, and H. Inaba, �??Generation of picosecond optical pulses with highly RF modulated AlGaAs DH laser,�?? IEEE J. Quantum Electron. 17, 663-670 (1981).
    [CrossRef]
  14. P. Vasil�??ev, �??Ultrafast diode lasers-Fundamentals and application,�?? Boston: Artech House, 1995.
  15. X. Wang and K. T. Chan, �??Enhancement of transmission data rates in incoherent FO-CDMA systems,�?? in OptoElectronics Communication Conference OECC�??00 Tech. Dig., (Chiba, Japan, 2000), Paper 14A2-5, pp. 458�??459.
  16. S. Kutsuzawa, N. Minato, S. Oshiba, A. Nishiki, and K. Kitayama, �??10 Gb/s�?2 ch signal unrepeated transmission over 100 km of data rate enhanced time-spread/wavelength-hopping OCDM using 2.5-Gb/s-FBG en/decoder,�?? IEEE Photon. Technol. Lett., 15, 317-319 (2003).
    [CrossRef]
  17. X. Wang and K. T. Chan, �??The effect of grating position deviation and fiber dispersion in the fiber optic�??CDMA network with the FBG en/decoder for T/S coding,�?? Microwave and Optic Technol. Lett. 35, 16-19 (2002).
    [CrossRef]
  18. Takeshi Ito, S. Machida, K. Nawata, and Tetsuhiko Ikegami, �??Intensity fluctuations in each longitudinal mode of a multimode AlGaAs laser,�?? IEEE J. Quantum Electron. 13, 574-579 (1977).
    [CrossRef]
  19. K. Ogawa and R. S. Vodhanel, �??Measurements of mode partition noise of laser diodes,�?? IEEE J. Quantum Electron. 18, 1090-1093 (1982).
    [CrossRef]
  20. K. Ogawa, �??Analysis of mode partition noise in laser transmission systems,�?? IEEE J. Quantum Electron. 18, 849-855 (1982).
    [CrossRef]
  21. N. H. Jensen, H. Oleson, and K. E. Stubkjaer, �??Partition noise in semiconductor lasers under CW and pulsed operation,�?? IEEE J. Quantum Electron. 23, 71-79 (1987).
    [CrossRef]
  22. G. J. Meslener, �??Mode-partition noise in microwave subcarrier transmission systems,�?? J. Lightwave Technol. 12, 118-126 (1994).
    [CrossRef]
  23. R. H. Wentworth, G. E. Bodeep, and T. E. Darcie, �??Laser mode partition noise in lightwave systems using dispersive optical fiber,�?? IEEE. J. Lightwave Technol. 10, 84 �??89 (1992).
    [CrossRef]
  24. B. R. Clark, �??Mode partition noise induced by optical filtering,�?? Electron. Lett. 25, 211-212 (1989).
    [CrossRef]
  25. R. S. Fyath and J. J. O�??Reilly, �??Performance of lightwave systems incorporating multilongitudinal mode laser and optically preamplified receiver combinations,�?? Optoelectronics IEE Proc. 137, 230-240 (1990).
    [CrossRef]
  26. R. A. Griffin, D. A. Jackson, and D. D. Sampson, �??Coherence and noise properties of gain-switched Fabry-Perot semiconductor lasers,�?? IEEE J. Select. Topics in Quantum Electron. 1, 569 �??576 (1995).
    [CrossRef]
  27. A. J. Mendez, J. L. Lambert, J. -M. Morookian, and R. M. Gagliardi, �??Synthesis and demonstration of high speed, bandwidth efficient optical code division multiple access (CDMA) tested at 1 Gb/s throughput,�?? IEEE Photon. Technol. Lett. 6, 1146-1149 (1994).
    [CrossRef]

Electron. Lett.

N. Wada, H. Sotobayashi, and K. Kitayama, �??2.5 Gbit/s time-spread/wavelength-hop optical code division multiplexing using fibre Bragg grating with supercontinuum light source,�?? Electron. Lett. 36, 815�??817 (2000).
[CrossRef]

B. R. Clark, �??Mode partition noise induced by optical filtering,�?? Electron. Lett. 25, 211-212 (1989).
[CrossRef]

Fiber and Integrated Optics

D. D. Sampson, G. J. Pendock, and R. A. Griffin, �??Photonic code-division multiple-access communications,�?? Fiber and Integrated Optics 16, 129-157 (1997).
[CrossRef]

IEEE J. Lightwave Tech.

L. Tanc�?vski and I. Andonovic, �??Hybrid wavelength hopping/time spreading schemes for use in massive optical networks with increased security,�?? IEEE J. Lightwave Tech. 14, 2636-2646 (1996).
[CrossRef]

IEEE J. Quantum Electron.

X. Wang and K. T. Chan, �??A sequentially self-seeding Fabry-Perot laser for two-dimensional encoding/decoding optical pulse,�?? IEEE J. Quantum Electron. 39, 83-90 (2003).
[CrossRef]

H. Ito, H. Yokoyama, S. Murata, and H. Inaba, �??Generation of picosecond optical pulses with highly RF modulated AlGaAs DH laser,�?? IEEE J. Quantum Electron. 17, 663-670 (1981).
[CrossRef]

Takeshi Ito, S. Machida, K. Nawata, and Tetsuhiko Ikegami, �??Intensity fluctuations in each longitudinal mode of a multimode AlGaAs laser,�?? IEEE J. Quantum Electron. 13, 574-579 (1977).
[CrossRef]

K. Ogawa and R. S. Vodhanel, �??Measurements of mode partition noise of laser diodes,�?? IEEE J. Quantum Electron. 18, 1090-1093 (1982).
[CrossRef]

K. Ogawa, �??Analysis of mode partition noise in laser transmission systems,�?? IEEE J. Quantum Electron. 18, 849-855 (1982).
[CrossRef]

N. H. Jensen, H. Oleson, and K. E. Stubkjaer, �??Partition noise in semiconductor lasers under CW and pulsed operation,�?? IEEE J. Quantum Electron. 23, 71-79 (1987).
[CrossRef]

IEEE J. Selec. Areas Commun.

K. Kitayama, �??Code division multiplexing lightwave networks based upon optical code conversion,�?? IEEE J. Selec. Areas Commun. 16, 1309-1319 (1998).
[CrossRef]

IEEE J. Select. Topics in Quantum Electr

R. A. Griffin, D. A. Jackson, and D. D. Sampson, �??Coherence and noise properties of gain-switched Fabry-Perot semiconductor lasers,�?? IEEE J. Select. Topics in Quantum Electron. 1, 569 �??576 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

A. J. Mendez, J. L. Lambert, J. -M. Morookian, and R. M. Gagliardi, �??Synthesis and demonstration of high speed, bandwidth efficient optical code division multiple access (CDMA) tested at 1 Gb/s throughput,�?? IEEE Photon. Technol. Lett. 6, 1146-1149 (1994).
[CrossRef]

X. Wang, K. L. Lee, C. Shu, and K. T. Chan, �??Multiwavelength self-seeded Fabry-Perot laser with subharmonic pulse-gating for two-dimensional fiber optic-CDMA,�?? IEEE Photon. Technol. Lett. 13, 1361-1363 (2000).
[CrossRef]

S. Kutsuzawa, N. Minato, S. Oshiba, A. Nishiki, and K. Kitayama, �??10 Gb/s�?2 ch signal unrepeated transmission over 100 km of data rate enhanced time-spread/wavelength-hopping OCDM using 2.5-Gb/s-FBG en/decoder,�?? IEEE Photon. Technol. Lett., 15, 317-319 (2003).
[CrossRef]

IEEE. J. Lightwave Technol.

R. H. Wentworth, G. E. Bodeep, and T. E. Darcie, �??Laser mode partition noise in lightwave systems using dispersive optical fiber,�?? IEEE. J. Lightwave Technol. 10, 84 �??89 (1992).
[CrossRef]

IEEE. Trans. Commun.

J. A. Salehi, �??Code division multiple-access techniques in optical fiber networks, Part I: fundamental principles,�?? IEEE. Trans. Commun. 37, 824-842 (1989).
[CrossRef]

J. Lightwave Technol.

P. R. Prucnal, M. A. Santoro, and T. R. Fan, �??Spread spectrum fiber-optic local area network using optical processing,�?? J. Lightwave Technol. 4, 547-554 (1986).
[CrossRef]

J. A. Salehi, A. M. Weiner, and J. P. Heritage, �??Coherent ultrashort light pulse code-division multiple-access communication systems,�?? J. Lightwave Technol. 8, 478-491 (1990).
[CrossRef]

G. J. Meslener, �??Mode-partition noise in microwave subcarrier transmission systems,�?? J. Lightwave Technol. 12, 118-126 (1994).
[CrossRef]

Microwave and Optic Technol. Lett.

X. Wang and K. T. Chan, �??The effect of grating position deviation and fiber dispersion in the fiber optic�??CDMA network with the FBG en/decoder for T/S coding,�?? Microwave and Optic Technol. Lett. 35, 16-19 (2002).
[CrossRef]

OECC 2000

X. Wang and K. T. Chan, �??Enhancement of transmission data rates in incoherent FO-CDMA systems,�?? in OptoElectronics Communication Conference OECC�??00 Tech. Dig., (Chiba, Japan, 2000), Paper 14A2-5, pp. 458�??459.

OFC 2001

H. Ben Jaafar, S. LaRochelle, P. -Y. Cortes, and H. Fathallah, �??1.25Gbit/s transmission of optical FFHOCDMA signals over 80km with 16 users,�?? Optical Fiber Communication Conference and Exhibit, 2001. OFC 2001 Technical Digest, (Optical Society of America, Anaheim, 2001), pp.TuV3-1 - TuV3-3.

OFC/IOOC 1999

X. Wang, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, �??Novel temporal/spectral coding technique based on fiber Bragg gratings for fiber optic CDMA application,�?? in Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication. OFC/IOOC '99. Technical Digest, (Optical Society of America, San Diego, 1999), pp. 341-343.
[CrossRef] [PubMed]

Optoelectronics IEE Proc.

R. S. Fyath and J. J. O�??Reilly, �??Performance of lightwave systems incorporating multilongitudinal mode laser and optically preamplified receiver combinations,�?? Optoelectronics IEE Proc. 137, 230-240 (1990).
[CrossRef]

Other

X. Wang and K. Kitayama, �??Analysis of beat noise in coherent and incoherent time-spreading OCDMA,�?? J. Lightwave Technol. (to be published).

P. Vasil�??ev, �??Ultrafast diode lasers-Fundamentals and application,�?? Boston: Artech House, 1995.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experiment on incoherent 2-D OCDMA with FR-GSFP-LD (a) Experiment setup (b) Spectra, (c) BER performance and eye diagram (inset).

Fig. 2.
Fig. 2.

Measured spectra (upper) and eye diagrams (lower) of (a) FR-GSFP-LD, (b) filtered by WDM band filter, (c) filtered by WDM and FBG filter, and (d) filtered by FBG encoder

Fig. 3.
Fig. 3.

Measured BER vs. received optical power (symbols) and theoretical predictions (solid lines)

Fig. 4.
Fig. 4.

Relationship between system performance and Nm (a) BER vs. received optical power for different Nm (b) Power penalty vs. Nm

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

RIN = < Δ I 2 > < I > 2
i = 1 N a i = 1 ,
r ( t ) = i = 1 N F en ( λ i ) f ( λ i , t ) a i .
σ MPN 2 = < r 2 ( t 0 ) > < r ( t 0 ) > 2
σ MPN 2 = k 2 [ i H en 2 ( λ i ) f 2 ( λ i , t 0 ) < a i > ( i H en f ( λ i , t 0 ) < a i > ) 2 ] ,
k 2 = < a i 2 > < a i > 2 < a i > < a i > 2 ,
BER = Q ( P S σ ) ,
σ 2 = σ MPN 2 + σ Sh 2 + σ dk 2 + σ th 2

Metrics