Abstract

We propose a random stack of resonant dielectric layers as a system for random-laser study. Owing to the Fabry–Perot resonance of the dielectric layers, the propagation of light in such systems is frequency dependent (a band structure). As a consequence, if the system is designed such that pump light is in passband while optical gain is in stop band, the laser threshold can be reduced dramatically compared with those of completely disordered systems.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. V. S. Letokhov, "Generation of light by a scattering medium with negative resonance absorption," Sov. Phys. JETP 26, 835-840 (1968).
  2. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
    [CrossRef]
  3. H. Cao, in Optical Properties of Nanostructured Random Media, V. M. Shalaev, ed. (Springer-Verlag, Berlin, 2002), pp. 303-329
  4. Y. Feng, J.-F. Bisson, J. Lu, S. Huang, K. Takaichi, A. Shirakawa, M. Musha, and K.-I. Ueda, "Thermal effects in quasi-continuous-wave Nd3+:Y3Al5O12 nanocrystalline-powder random laser," Appl. Phys. Lett. 84, 1040-1042 (2004).
    [CrossRef]
  5. J. Ripoll, C. M. Soukoulis, and E. N. Economou, "Optimal tuning of lasing modes through collective particle resonance," J. Opt. Soc. Am. B 21, 141-149 (2004).
    [CrossRef]
  6. X. H. Wu, A. Yamilov, H. Noh, H. Cao, E. W. Seelig, and R. P. H. Chang, "Random lasing in closely packed resonant scatterers," J. Opt. Soc. Am. B 21, 159-169 (2004).
    [CrossRef]
  7. S. A. Bulgakov and M. Nieto-Vesperinas, "Field distribution inside one-dimensional random photonic lattices," J. Opt. Soc. Am. A 15, 503-510 (1998).
    [CrossRef]
  8. Z.-Q. Zhang, "Light amplification and localization in randomly layered media with gain," Phys. Rev. B 52, 7960-7964 (1995).
    [CrossRef]
  9. A. A. Chabanov and A. Z. Genack, "Photon localization in resonant media," Phys. Rev. Lett. 87, 153901 (2001).
    [CrossRef] [PubMed]
  10. Y. Feng and K.-I. Ueda, "One-mirror random laser," Phys. Rev. A 68, 025803 (2003).
    [CrossRef]
  11. A. L. Burin, H. Cao, and M. A. Ratner, "Two-photon pumping of a random laser," IEEE J. Sel. Top. Quantum Electron. 9, 124-127 (2003).
    [CrossRef]
  12. P. Sebbah and C. Vanneste, "Random laser in the localized regime," Phys. Rev. B 66, 144202 (2002).
    [CrossRef]
  13. M. Patra, "Decay rate distributions of disordered slabs and application to random lasers," Phys. Rev. E 67, 016603 (2003).
    [CrossRef]

Appl. Phys. Lett.

Y. Feng, J.-F. Bisson, J. Lu, S. Huang, K. Takaichi, A. Shirakawa, M. Musha, and K.-I. Ueda, "Thermal effects in quasi-continuous-wave Nd3+:Y3Al5O12 nanocrystalline-powder random laser," Appl. Phys. Lett. 84, 1040-1042 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. L. Burin, H. Cao, and M. A. Ratner, "Two-photon pumping of a random laser," IEEE J. Sel. Top. Quantum Electron. 9, 124-127 (2003).
[CrossRef]

J. Opt. Soc. Am. A

S. A. Bulgakov and M. Nieto-Vesperinas, "Field distribution inside one-dimensional random photonic lattices," J. Opt. Soc. Am. A 15, 503-510 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Phys. Rev. A

Y. Feng and K.-I. Ueda, "One-mirror random laser," Phys. Rev. A 68, 025803 (2003).
[CrossRef]

Phys. Rev. B

Z.-Q. Zhang, "Light amplification and localization in randomly layered media with gain," Phys. Rev. B 52, 7960-7964 (1995).
[CrossRef]

P. Sebbah and C. Vanneste, "Random laser in the localized regime," Phys. Rev. B 66, 144202 (2002).
[CrossRef]

Phys. Rev. E

M. Patra, "Decay rate distributions of disordered slabs and application to random lasers," Phys. Rev. E 67, 016603 (2003).
[CrossRef]

Phys. Rev. Lett.

A. A. Chabanov and A. Z. Genack, "Photon localization in resonant media," Phys. Rev. Lett. 87, 153901 (2001).
[CrossRef] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
[CrossRef]

Sov. Phys. JETP

V. S. Letokhov, "Generation of light by a scattering medium with negative resonance absorption," Sov. Phys. JETP 26, 835-840 (1968).

Other

H. Cao, in Optical Properties of Nanostructured Random Media, V. M. Shalaev, ed. (Springer-Verlag, Berlin, 2002), pp. 303-329

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Transmission spectra for systems with number of layers N=15. In (a) the system is completely random; in (b) it contains 10 identical layers of 1-µm thickness and a transmission spectrum for a single dielectric layer of 1-µm thickness; in (c) all dielectric layers are identical but the spacing remains random; in (d) the dielectric layers and the spacing are identical.

Fig. 2.
Fig. 2.

Transmission spectra averaged over 5000 realizations and the variance for systems formed by dielectric layers of thickness with normal distribution. System length N=15; ε=9; variance σ=0.01, 0.03, 0.09.

Fig. 3.
Fig. 3.

Simulation results for systems with σ=0.1, 0.01, and random system. Top, the reciprocal of localization length as a function of wave number; bottom, the threshold of laser at 0.325π µm-1, which is near the best-localized wavelength, for a system of 60-µm length, as a function of wave number of pump light.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

g ( x ) = GA ( x ) exp ( x ξ p ) .
I ( x , x 0 ) = B ( x , x 0 ) exp ( x x 0 ξ l ) ,
δ exp ( x 0 ξ l ) + exp ( L x 0 ξ l ) + δ 0 ,
0 L g ( x ) I ( x , x 0 ) d x = 0 L G t A ( x ) B ( x , x 0 ) exp ( x ξ p x x 0 ξ l ) d x
= G t C 0 L exp ( x ξ p x x 0 ξ l ) d x
= δ .
L ξ ( λ ) = < ln T ( λ , L ) > .

Metrics