Abstract

Ultrahigh resolution optical coherence tomography (OCT) is performed with a broadband, Kerr-lens mode-locked, diode-pumped Cr3+:LiCAF laser. The laser source has a bandwidth of 89 nm with an output power of 37 mW. OCT imaging is demonstrated with 4.5 µm axial resolution in air or 3.4 µm in tissue. In vivo imaging of the human retina is demonstrated. Ultrahigh resolution OCT images from the Cr3+:LiCAF laser source were compared with standard resolution images from a commercial OCT system and ultrahigh resolution OCT images from a Kerr-lens mode-locked Ti:sapphire laser light source. The Cr3+:LiCAF source is pumped only by two single-emitter laser diodes, which makes this laser a viable, low-cost alternative to mode-locked Ti:sapphire lasers that are currently used for ultrahigh resolution OCT imaging.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K.Gregory, C. A. Puliafito, J. G. Fujimoto, ???Optical coherence tomography,??? Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, ???Optical coherence tomography - principles and applications,??? Rep. Prog. Phys. 66, 239-303 (2003).
    [CrossRef]
  3. T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, S. Yakubovich, ???Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,??? Opt. Express 12, 2112-2119 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2112">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2112</a>
    [CrossRef] [PubMed]
  4. B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, ???High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,??? Opt. Lett. 20, 1486-1488 (1995).
    [CrossRef] [PubMed]
  5. W. Drexler, U. Morgner, F. X. Kaertner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, ???In vivo high resolution optical coherence tomography,??? Opt. Lett. 24, 1221-1223 (1999).
    [CrossRef]
  6. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kaertner, J. S. Schuman, J. G. Fujimoto, ???Ultrahigh resolution ophthalmic optical coherence tomography,??? Nature Med. 7, 502-50789 (2001).
    [CrossRef] [PubMed]
  7. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, A. Stingl, ???Compact low-cost Ti.Al2O3 laser for in vivo ultrahigh resolution optical coherence tomography,??? Opt. Lett. 28, 905-907 (2003).
    [CrossRef] [PubMed]
  8. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, S. A. Boppart, ???Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,??? Opt. Lett. 27, 2010-2012 (2002).
    [CrossRef]
  9. I. Hartl, X. D. Li, C. Chuboda, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, ???Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,??? Opt. Lett. 26, 608-610 (2001).
    [CrossRef]
  10. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russel, M. Vetterlein, E. Scherzer, ???Submicrometer axial resolution optical coherence tomography,??? Opt. Lett. 27, 1800-1802 (2002).
    [CrossRef]
  11. Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, R. Windeler, ???Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,??? Opt. Lett. 28, 182-184 (2003).
    [CrossRef] [PubMed]
  12. S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Buenting, D. Kopf, ???Ultrahigh resolution realtime OCT imaging using a compact femtosecond Nd :Glass laser and nonlinear fiber,??? Opt. Express 11, 3290-3297 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3290">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3290</a>
    [CrossRef]
  13. P. Wagenblast, R. Ell, U. Morgner, F. Grawert, F. X. Kaertner, ???10-fs, diode-pumped Cr3+:LiCAF laser,??? Opt. Lett. 28, 1713-1715 (2003).
    [CrossRef] [PubMed]
  14. S. Uemura, K. Torizuka, ???Development of a Diode-Pumped Kerr-Lens Mode-Locked Cr:LiSAF laser,??? IEEE J. Quantum Electron. 39, 68-73 (2003).
    [CrossRef]
  15. J. Herrmann, ???Theory of Kerr-lens mode-locking: role of self-focusing and radially varying gain,??? J. Opt. Soc. Am. B 11, 498-512 (1994).
    [CrossRef]
  16. F. X. Kaertner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, T. Tschudi, ???Design and fabrication of double-chirped mirrors,??? Opt. Lett. 22, 831-833 (1997).
    [CrossRef]
  17. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, ???In vivo retinal imaging by optical coherence tomography,??? Opt. Lett. 18, 1864-1866 (1993).
    [CrossRef] [PubMed]
  18. M. R. Hee, J. A. Izatt, E. A. Swanson, ???Optical coherence tomography of the human retina,??? Archives of Ophthalmology 113, 325-332 (1995).
    [CrossRef] [PubMed]
  19. M. R. Hee, C. A. Puliafito, J. S. Duker, ???Topography of diabetic macular edema with optical coherence tomography,??? Ophthalmology 105, 360-370 (1998).
    [CrossRef] [PubMed]
  20. A. M. Kowalevicz, T. R. Schibli, F. X: Kaertner, J. G. Fujimoto, ???Ultralow threshold Kerr-lens mode-locked Ti:Al2O3 laser,??? Opt. Lett. 27, 2037-2039 (2002).
    [CrossRef]

Archives of Ophthalmology

M. R. Hee, J. A. Izatt, E. A. Swanson, ???Optical coherence tomography of the human retina,??? Archives of Ophthalmology 113, 325-332 (1995).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

S. Uemura, K. Torizuka, ???Development of a Diode-Pumped Kerr-Lens Mode-Locked Cr:LiSAF laser,??? IEEE J. Quantum Electron. 39, 68-73 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Nature Med.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kaertner, J. S. Schuman, J. G. Fujimoto, ???Ultrahigh resolution ophthalmic optical coherence tomography,??? Nature Med. 7, 502-50789 (2001).
[CrossRef] [PubMed]

Ophthalmology

M. R. Hee, C. A. Puliafito, J. S. Duker, ???Topography of diabetic macular edema with optical coherence tomography,??? Ophthalmology 105, 360-370 (1998).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, ???High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,??? Opt. Lett. 20, 1486-1488 (1995).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kaertner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, ???In vivo high resolution optical coherence tomography,??? Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, A. Stingl, ???Compact low-cost Ti.Al2O3 laser for in vivo ultrahigh resolution optical coherence tomography,??? Opt. Lett. 28, 905-907 (2003).
[CrossRef] [PubMed]

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, S. A. Boppart, ???Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,??? Opt. Lett. 27, 2010-2012 (2002).
[CrossRef]

I. Hartl, X. D. Li, C. Chuboda, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, ???Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,??? Opt. Lett. 26, 608-610 (2001).
[CrossRef]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russel, M. Vetterlein, E. Scherzer, ???Submicrometer axial resolution optical coherence tomography,??? Opt. Lett. 27, 1800-1802 (2002).
[CrossRef]

Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, R. Windeler, ???Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,??? Opt. Lett. 28, 182-184 (2003).
[CrossRef] [PubMed]

P. Wagenblast, R. Ell, U. Morgner, F. Grawert, F. X. Kaertner, ???10-fs, diode-pumped Cr3+:LiCAF laser,??? Opt. Lett. 28, 1713-1715 (2003).
[CrossRef] [PubMed]

A. M. Kowalevicz, T. R. Schibli, F. X: Kaertner, J. G. Fujimoto, ???Ultralow threshold Kerr-lens mode-locked Ti:Al2O3 laser,??? Opt. Lett. 27, 2037-2039 (2002).
[CrossRef]

F. X. Kaertner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, T. Tschudi, ???Design and fabrication of double-chirped mirrors,??? Opt. Lett. 22, 831-833 (1997).
[CrossRef]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, ???In vivo retinal imaging by optical coherence tomography,??? Opt. Lett. 18, 1864-1866 (1993).
[CrossRef] [PubMed]

Rep. Prog. Phys.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, ???Optical coherence tomography - principles and applications,??? Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K.Gregory, C. A. Puliafito, J. G. Fujimoto, ???Optical coherence tomography,??? Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the laser setup. Blue and red mirrors A and B are DCM with dispersion characteristics of Fig. 2. PBS: polarizing beam splitter, OC: output coupler, PM: pump mirror, λ/2: half wave plate.

Fig. 2.
Fig. 2.

(a) Dispersion characteristics of the double-chirped mirrors, and (b) mode-locked spectrum of the laser. (c) Interferometric point spread function of the imaging system in air. (d) Demodulated logarithmic point spread function of the OCT imaging system. The resolution is 4.5 µm in air, which corresponds to 3.4 µm in biological tissue.

Fig. 3.
Fig. 3.

Schematic of the fiber-optic ultrahigh resolution ophthalmic OCT imaging system. Dispersion compensation of the slit lamp optics is achieved by using BK7 and fused silica (FS) prisms while the water cell compensates the dispersion from the vitreous body of the eye. The polarization is adjusted separately by the controllers (PC).

Fig. 4.
Fig. 4.

OCT images of normal retina taken from the same location. a) Ultrahigh resolution OCT image taken with the Cr3+:LiCAF laser with ~3.4 µm axial resolution in tissue (95dB sensitivity). b) Standard resolution OCT image taken with the commercial OCT system (Stratus OCT, Carl Zeiss Meditec, Dublin, CA) with ~10 µm axial resolution in tissue (90dB). c) Ultrahigh resolution OCT image taken with a Ti:sapphire laser with ~3 µm axial resolution in tissue (96dB). NFL: retinal nerve fiber layer, GCL: ganglion cell layer, IPL/OPL: inner/outer plexiform layer, INL/ONL: inner/outer nuclear layer, ELM: external limiting membrane, IS/OS: junction between the inner and outer photoreceptor segment, RPE: retinal pigment epithelium.

Metrics