Abstract

This paper addresses the polarization sensitivity issue of microring resonators by proposing a novel design of an MMI-coupled resonator with substantially reduced or zero polarization sensitivity, while maintaining single-mode and low-loss conditions. The design is based on polarization-independent, single-mode waveguide obtained by using a judicious combination of critical ridge width and etch depth. The design is limited to relatively large resonators having small FSR (free spectral range). For the first time, it gives designer a handle on the intrinsic polarization-dependent characteristics of waveguide microresonators.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. K. Madsen, ???Efficient architectures for exactly realizing optical filters with optimum bandpass designs,??? IEEE Photon Technol Lett. 10, 1136 (1998).
    [CrossRef]
  2. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P Laine, ???Microring resonator channel dropping filters,??? J. Lightwave Technol. 15, 998 (1997).
    [CrossRef]
  3. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P-T.Ho, ???High-order filter response in coupled microring resonators,??? IEEE Photon. Technol. Lett. 12, 320 (2000).
    [CrossRef]
  4. M. K. Chin, C. Youtsey, W. Zhao, T. Pierson, Z. Ren, S. L. Wu, L. Wang, Y. G. Zhou, and S. T. Ho, ???GaAs microcavity channel-dropping filter based on a race-track resonator,??? IEEE Photon. Technol. Lett. 11, 1620 (1999).
    [CrossRef]
  5. M. K. Chin, "Polarization dependence in waveguide-coupled micro-resonators," Opt. Express 11, 1724 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1724">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1724</a>
    [CrossRef] [PubMed]
  6. S. T. Chu, B.E. Little, V. Van, J. V. Hryniewicz, A. P. Absil, F. G. Johnson, D. Gill, O. King, F. Seiferth, M. Trakalo, and J. Shanton, ???Compact full C-band tunable filters for 50GHz channel spacing based on high order microring resonators,??? PDP9, CLEO (2004).
  7. V. M. Menon, W. Tong, S. R. Forrest, ???Control of quality factor and critical coupling in microring resonators through integration of a semiconductor optical amplifier,??? IEEE Photon Technol Lett. 16, 1343 (2004).
    [CrossRef]
  8. M. K. Chin, and S. T. Ho, ???Design and modeling of waveguide-coupled single-mode microring resonators,??? J. Lightwave Technol 15, 1433 (1998).
    [CrossRef]
  9. Zhixi Bian, B. Liu, A. Shakouri, ???InP-based passive ring-resonator-coupled lasers,??? IEEE J. Quantum Electron. 39, 859 (2003).
    [CrossRef]
  10. Lucas B. Soldano and Erik C. M. Pennings, ???Optical Multi-mode Interference Devices based on Self-Imaging: Principles and Applications,??? J. Lightwave Technology 13, 615 (1995).
    [CrossRef]
  11. Dominik G. Rabus, and Michael Hamacher, ???MMI-coupled ring resonators in GaInAsP-InP,??? IEEE Photon. Technol. Lett. 13, 812 (2001).
    [CrossRef]
  12. L. Caruso and I. Montrosset, ???Analysis of a racetrack microring resonator with MMI coupler,??? J. Lightwave Technol. 21, 206 (2003).
    [CrossRef]
  13. Apollo Photonic Solutions Suite (APSS2), Apollo Photonics, Hamilton, Canada.
  14. S. T. Chu, W. Pan, S. Sato, T. Kaneko, B. E. Little, and Y. Kokubun, ???Wavelength trimming of a microring resonator filter by means of a UV sensitive polymer overlay,??? IEEE Photon. Technol. Lett.11, 688 (1999).
    [CrossRef]

Apollo Photonics

Apollo Photonic Solutions Suite (APSS2), Apollo Photonics, Hamilton, Canada.

CLEO 2004

S. T. Chu, B.E. Little, V. Van, J. V. Hryniewicz, A. P. Absil, F. G. Johnson, D. Gill, O. King, F. Seiferth, M. Trakalo, and J. Shanton, ???Compact full C-band tunable filters for 50GHz channel spacing based on high order microring resonators,??? PDP9, CLEO (2004).

IEEE J. Quantum Electron.

Zhixi Bian, B. Liu, A. Shakouri, ???InP-based passive ring-resonator-coupled lasers,??? IEEE J. Quantum Electron. 39, 859 (2003).
[CrossRef]

IEEE Photon Technol Lett.

C. K. Madsen, ???Efficient architectures for exactly realizing optical filters with optimum bandpass designs,??? IEEE Photon Technol Lett. 10, 1136 (1998).
[CrossRef]

IEEE Photon Technol. Lett.

V. M. Menon, W. Tong, S. R. Forrest, ???Control of quality factor and critical coupling in microring resonators through integration of a semiconductor optical amplifier,??? IEEE Photon Technol Lett. 16, 1343 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P-T.Ho, ???High-order filter response in coupled microring resonators,??? IEEE Photon. Technol. Lett. 12, 320 (2000).
[CrossRef]

M. K. Chin, C. Youtsey, W. Zhao, T. Pierson, Z. Ren, S. L. Wu, L. Wang, Y. G. Zhou, and S. T. Ho, ???GaAs microcavity channel-dropping filter based on a race-track resonator,??? IEEE Photon. Technol. Lett. 11, 1620 (1999).
[CrossRef]

S. T. Chu, W. Pan, S. Sato, T. Kaneko, B. E. Little, and Y. Kokubun, ???Wavelength trimming of a microring resonator filter by means of a UV sensitive polymer overlay,??? IEEE Photon. Technol. Lett.11, 688 (1999).
[CrossRef]

Dominik G. Rabus, and Michael Hamacher, ???MMI-coupled ring resonators in GaInAsP-InP,??? IEEE Photon. Technol. Lett. 13, 812 (2001).
[CrossRef]

J. Lightwave Technol.

L. Caruso and I. Montrosset, ???Analysis of a racetrack microring resonator with MMI coupler,??? J. Lightwave Technol. 21, 206 (2003).
[CrossRef]

M. K. Chin, and S. T. Ho, ???Design and modeling of waveguide-coupled single-mode microring resonators,??? J. Lightwave Technol 15, 1433 (1998).
[CrossRef]

J. Lightwave Technol. 15, 998

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P Laine, ???Microring resonator channel dropping filters,??? J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

J. Lightwave Technology

Lucas B. Soldano and Erik C. M. Pennings, ???Optical Multi-mode Interference Devices based on Self-Imaging: Principles and Applications,??? J. Lightwave Technology 13, 615 (1995).
[CrossRef]

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Calculated effective indices for TE and TM modes as a function of ridge width, for a straight and a curved waveguide (with radius 40 µm). The waveguide core thickness is 0.5 µm and the refractive index n is 3.41 (e.g. InGaAsP). The upper and lower cladding layer index is n=3.17 (e.g., InP). The ridge is etched just below the core layer. The etch depth is 1.9 µm.

Fig. 2.
Fig. 2.

Leakage losses for the fundamental and the higher-order modes in the polarization independent ridge waveguides (i.e., βXY for fundamental Ex mode and Ey mode) as a function of etch depth for a bending radius of 30µm.

Fig. 3.
Fig. 3.

(a) Type I and Type II MMI. (b) The power splitting ratios as a function of wavelength for TE and TM modes in a 2×2 MMI coupler with a length of 52 µm and a width of 6 µm [inset]. For 3-dB splitter, the waveguide separation is 1/3 of the MMI width.

Fig. 4.
Fig. 4.

Simulated reflectance (R) and transmittance (T) spectra of the resonator for the TE and TM polarizations. Inset shows the schematic layout of the MMI-coupled resonator.

Tables (1)

Tables Icon

Table 1. MMI Lengths for various split ratios and configurations (Types I, II, III), assuming w=1.5 µm and D=2.0 µm. For Type I, W mmi=D+w, for Type II, W mmi=3D, and for Type III, W mmi=2D.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L π π ( β 0 β 1 ) 4 3 n r W eq 2 λ 0

Metrics