Abstract

We present three dimensional images of backscattered intensity, and to the best of our knowledge, the first 3D-images of retardation and fast axis orientation of human skin in vivo. The images were recorded with a phase resolved, polarization sensitive optical coherence tomography (OCT) system which is based on a fast transversal scanning of the sample. The three dimensional data sets were obtained by recording several en face images at different depths within the sample. Intensity and retardation images are combined to a 4 dimensional animation to enhance the visualization of the three dimensional data set. The three dimensional information enables a more accurate interpretation of the structural and birefringence information as compared to 2 dimensional B-scans. Birefringence properties of different skin regions are presented and discussed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, ???Optical coherence tomography,??? Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. B. E. Bouma, G. J. Tearney, Handbook of Optical Coherence Tomography, (Marcel Dekker, New York 2002).
  3. A. F. Fercher, C. K. Hitzenberger, ???Optical coherence tomography, ???Chapter 4 in Progress in Optics 44, Elsevier Science B.V. (2002)
  4. M. R. Hee, D. Huang, E. A. Swanson and J. G. Fujimoto, ???Polarization sensitive low coherence reflectometer for birefringence characterization and ranging,??? J. Opt. Soc. Am. B 9, 903-908 (1992)
    [CrossRef]
  5. J. F. De Boer, T. E. Milner, M. J. C. van Gemert and J. S. Nelson, ???Two-dimensional birefringence imaging in biological tissue by polarization sensitive optical coherence tomography,??? Opt. Lett. 22, 934-936 (1997)
    [CrossRef] [PubMed]
  6. J. F. De Boer, T. E. Milner and J. S. Nelson, ???Determination of the depth resolved Stokes parameters of light backscattered from turbid media by use of polarization sensitive optical coherence tomography,??? Opt. Lett. 24, 300-302 (1999)
    [CrossRef]
  7. C. E. Saxer, J. F. De Boer, B. H. Park, Y. Zhao, C. Chen and J. S. Nelson, ???High speed fiber based polarization sensitive optical coherence tomography of in vivo human skin,??? Opt. Lett. 25, 1355-1357 (2000)
    [CrossRef]
  8. S. Jiao, L. V. Wang, ???Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,??? J. Biomed. Opt. 7, 350-358 (2002)
    [CrossRef] [PubMed]
  9. C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher and A. F. Fercher, ???Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,??? Opt. Express 9, 780-790 (2001) <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-780">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-780</a>.
    [CrossRef] [PubMed]
  10. B. H. Park, M. C. Pierce, B. Cense, J. F. de Boer, ???Real-time multi-functional optical coherence tomography,??? Opt. Express 11, 782-793 (2003) <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-782">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-782</a>.
    [CrossRef] [PubMed]
  11. E. Goetzinger, M. Pircher, M. Sticker, A. F. Fercher, C. K. Hitzenberger, ???Measurement and imaging of birefringent properties of the human cornea with phase-resolved polarization-sensitive optical coherence tomography,??? J. Biomed. Opt. 9, 94-102 (2004)
    [CrossRef]
  12. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce and J. F. de Boer, ???In vivo depth resolved birefringence measurements of human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,??? Opt. Lett. 27, 1610-1612 (2002)
    [CrossRef]
  13. K. Schoenberger, B. W. Colston, Jr. D. J. Maitland, L. B. Da Silva and M. J. Everett, ???Mapping of birefringence and thermal damage in tissue by use of polarization sensitive optical coherence tomography,??? Appl. Opt. 37, 6026-6036 (1998)
    [CrossRef]
  14. J. F. de Boer, S. M. Srinivas, A. Malekafzali, Z. Chen, J. S. Nelson, ???Imaging thermally damaged tissue by polarization sensitive optical coherence tomography,??? Opt. Expr. 3, 212-218 (1998)
    [CrossRef]
  15. A. G. Podoleanu, G. M. Dobre and D. A. Jackson, ???En-face coherence imaging using galvanometer scanner modulation,??? Opt. Lett. 23 147-149 (1998)
    [CrossRef]
  16. C. K. Hitzenberger, P. Trost, P. W. Lo, Q. Zhou, ???Three-dimensional imaging of the human retina by high-speed optical coherence tomography for retinal imaging,??? Opt. Express 11 2753-2761 (2003) <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2753">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2753</a>.
    [CrossRef] [PubMed]
  17. R. G. Cucu, A. G. Podoleanu, R. B. Rosen, A. B. Boxer, D. A. Jackson, ???En face polarization sensitive optical coherence tomography,??? Proc. SPIE 5140, 113-119 (2003)
    [CrossRef]
  18. M. Pircher, E. Goetzinger, R. Leitgeb and C. K. Hitzenberger, ???Transversal phase resolved polarization sensitive optical coherence tomography,??? J. Phys. Med. Biol. 49, 1257-1263 (2004)
    [CrossRef]
  19. M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, J. F. De Boer, ???Birefringence measurements in human skin using polarization sensitive optical coherence tomography,??? J. Biomed. Opt. 9, 287-291 (2004)
    [CrossRef] [PubMed]
  20. P. J. Tadrous (2002), <a href= "http://www.bialith.com/">http://www.bialith.com/</a>.
  21. B. A. I. van den Bergh, J. Vroom, H. Gerritsen, H. E. Junginger, J. A. Bouwstra, ???Interactions of elastic and rigid vesicles with human skin in vitro: electron microscopy and two-photon excitation microscopy,??? Biochem. et. Biophys. Acta 1461, 155-173 (1999)
    [CrossRef]
  22. Y. Sun, J.W. Su, W. Lo, S. J. Lin, S. H. Jee, C. Y. Dong, ???Multiphoton polarization imaging of the stratum corneum and the dermis in ex-vivo human skin,??? Opt. Express 11, 3377-3384 (2003) <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3377">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3377</a>.
    [CrossRef] [PubMed]
  23. J. M. Schmitt, S. H. Xiang, ???Cross-polarized backscatter in optical coherence tomography of biological tissue,??? Opt. Lett. 23, 1060-2062 (1998)
    [CrossRef]
  24. B. H. Park, C. E. Saxer, S. M. Srinivas, J. S. Nelson, J. F. de Boer, ???In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,??? J. Biomed. Opt. 6, 474-479 (2001)
    [CrossRef] [PubMed]

Appl. Opt.

Biochem. et. Biophys. Acta

B. A. I. van den Bergh, J. Vroom, H. Gerritsen, H. E. Junginger, J. A. Bouwstra, ???Interactions of elastic and rigid vesicles with human skin in vitro: electron microscopy and two-photon excitation microscopy,??? Biochem. et. Biophys. Acta 1461, 155-173 (1999)
[CrossRef]

J. Biomed. Opt.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, J. F. De Boer, ???Birefringence measurements in human skin using polarization sensitive optical coherence tomography,??? J. Biomed. Opt. 9, 287-291 (2004)
[CrossRef] [PubMed]

B. H. Park, C. E. Saxer, S. M. Srinivas, J. S. Nelson, J. F. de Boer, ???In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,??? J. Biomed. Opt. 6, 474-479 (2001)
[CrossRef] [PubMed]

E. Goetzinger, M. Pircher, M. Sticker, A. F. Fercher, C. K. Hitzenberger, ???Measurement and imaging of birefringent properties of the human cornea with phase-resolved polarization-sensitive optical coherence tomography,??? J. Biomed. Opt. 9, 94-102 (2004)
[CrossRef]

S. Jiao, L. V. Wang, ???Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,??? J. Biomed. Opt. 7, 350-358 (2002)
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

J. Phys. Med. Biol.

M. Pircher, E. Goetzinger, R. Leitgeb and C. K. Hitzenberger, ???Transversal phase resolved polarization sensitive optical coherence tomography,??? J. Phys. Med. Biol. 49, 1257-1263 (2004)
[CrossRef]

Opt. Expr.

J. F. de Boer, S. M. Srinivas, A. Malekafzali, Z. Chen, J. S. Nelson, ???Imaging thermally damaged tissue by polarization sensitive optical coherence tomography,??? Opt. Expr. 3, 212-218 (1998)
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

R. G. Cucu, A. G. Podoleanu, R. B. Rosen, A. B. Boxer, D. A. Jackson, ???En face polarization sensitive optical coherence tomography,??? Proc. SPIE 5140, 113-119 (2003)
[CrossRef]

Progress in Optics

A. F. Fercher, C. K. Hitzenberger, ???Optical coherence tomography, ???Chapter 4 in Progress in Optics 44, Elsevier Science B.V. (2002)

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, ???Optical coherence tomography,??? Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other

B. E. Bouma, G. J. Tearney, Handbook of Optical Coherence Tomography, (Marcel Dekker, New York 2002).

P. J. Tadrous (2002), <a href= "http://www.bialith.com/">http://www.bialith.com/</a>.

Supplementary Material (3)

» Media 1: MOV (504 KB)     
» Media 2: MOV (1039 KB)     
» Media 3: MOV (995 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scanning scheme of the transversal OCT system.

Fig. 2.
Fig. 2.

X-Z image of a human fingertip in vivo obtained from a 3 dimensional data set. a) intensity image, b) retardation (blue δ=0°, red δ=90°), c) cumulative fast axis orientation (blue Θ=-90°, red Θ=+90°) (only values above a certain intensity threshold are displayed). d) and e) same section as in b) and c) with increased threshold. (Each image covers an area of 1.8×1mm2)

Fig. 3.
Fig. 3.

Animation of a 3 dimensional volume rendered data set obtained from a human fingertip in vivo. The opacity corresponds to the backscattered intensity, the retardation corresponds to the color coding (Blue δ=0°, red δ=90°, only values above a certain intensity threshold are displayed) (size 500kB) (the image covers a volume of 1.8×2×1mm3)

Fig. 4.
Fig. 4.

Frame no.20 of movie showing several en-face images of a 3D data set of a human fingertip in vivo at different depth positions. Upper left: intensity image of a B-scan (x-z) (yellow line corresponds to the depth position of the en face images), upper right: en face (x-y) intensity image, lower left: en face cumulative fast axis orientation image (blue Θ=-90°, red Θ=+90°), lower right: en face retardation image (blue δ=0°, red δ=90°) The yellow (black) lines correspond to the B-scan position.(size 1MB) (The data set consists of a volume of 1.8×2×1mm3)

Fig. 5.
Fig. 5.

Frame no.20 of movie showing several en-face images of the back of human hand in vivo at different depth positions. Upper left: intensity image of a B-scan (yellow line corresponds to the depth position of the en face images), upper right: intensity image, lower left: cumulative fast axis orientation (blue Θ=-90°, red Θ=+90°), lower right: retardation (blue δ=0°, red δ=90°). The yellow (black) line corresponds to the B-scan position. (Size 1MB)(The data set consists of a volume of 1.8×2×1mm3)

Fig. 6.
Fig. 6.

B-scans obtained from a three dimensional data set (same data set as in Fig. 5) of the back of a human hand. a) retardation (blue δ=0°, red δ=90°), b) cumulative fast axis orientation (blue Θ=-90°, red Θ=+90°) The position of the B-scan is indicated as a black line in Fig. 5 (each image covers an area of 1.8×1mm2)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R ( z ) A 1 2 ( z ) + A 2 2 ( z ) ,
δ ( z ) = arctan ( A 2 ( z ) A 1 ( z ) ) .
θ = ( 180 ° Δ Φ ) 2 .

Metrics