Abstract

A passive all-optical scheme for clock extraction from non return-to-zero (NRZ) data has been proposed based on narrow-band filtering. Two equally effective embodiments of the proposed scheme have been demonstrated experimentally. A carrier-to-noise ratio (CNR) of 30 dB has been achieved at 40 Gbit/s using fiber Bragg gratings (FBG).

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. J. Lee, H. G. Kim, J. Y. Choi, and H. K. Lee, ???All-optical clock recovery from NRZ data with simple NRZ-to-PRZ converter based on self-phase modulation of semiconductor optical amplifier, ??? Electron. Lett. 35, 989-990 (1999)
    [CrossRef]
  2. W. Mao, M. Al-Mumin, X. Wang, and G. Li, ???All-optical enhancement of clock and clock-to-data suppression ratio of NRZ data,??? IEEE Photon. Technol. Lett. 13, 239-241 (2001)
    [CrossRef]
  3. A. Bilenca, D. Dahan, J. Lasri, G. Eisenstein, and D. Ritter, ???High bit rate clock recovery of NRZ data by all-optical processing in a semiconductor optical amplifier and direct optical injection locking of a selfoscillating phototransistor, ???IEEE Photon. Technol. Lett. 14, 399-401 (2002)
    [CrossRef]
  4. H. K. Lee, C. H. Lee, S. B. Kang, M. Y. Jeon, K. H. Kim, J. T. Ahn, and E. H. Lee, ???All-fibre-optic clock recovery from non-return-to-zero format data,??? Electron. Lett. 34, 478-480 (1998).
    [CrossRef]
  5. C. H. Lee, and H. K. Lee, ???Passive all-optical clock signal extractor for non-return-to-zero signals,??? Electron. Lett. 34, 295-297 (1998).
    [CrossRef]
  6. S. B. Jun, K. J. Park, H. Kim, H. S. Chung, J. H. Lee, and Y. C. Chung, ???Passive optical NRZ-to-RZ converter,??? in Optical Fiber Communications Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2004), Paper ThN1
  7. B. Franz, ???Optical signal processing for very high speed (>40 Gbit/s) ETDM binary NRZ clock recovery,??? in Optical Fiber Communications Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2001), Paper MG1.
  8. W. Hong, D. Huang, F. Cai, and Y. Wang, ???Simultaneous clock component extraction and wavelength conversion of NRZ signal using an SOA loop mirror,??? IEEE Photon. Technol. Lett. 16, 1116-1118 (2004)
    [CrossRef]
  9. P. E. Barnsley, and P. J. Fiddyment, ???Clock extraction using saturable absorption in a semiconductor nonlinear optical amplifier,??? IEEE Photon. Technol. Lett. 3, 832-834 (1991)
    [CrossRef]

Electron. Lett. (3)

H. K. Lee, C. H. Lee, S. B. Kang, M. Y. Jeon, K. H. Kim, J. T. Ahn, and E. H. Lee, ???All-fibre-optic clock recovery from non-return-to-zero format data,??? Electron. Lett. 34, 478-480 (1998).
[CrossRef]

C. H. Lee, and H. K. Lee, ???Passive all-optical clock signal extractor for non-return-to-zero signals,??? Electron. Lett. 34, 295-297 (1998).
[CrossRef]

H. J. Lee, H. G. Kim, J. Y. Choi, and H. K. Lee, ???All-optical clock recovery from NRZ data with simple NRZ-to-PRZ converter based on self-phase modulation of semiconductor optical amplifier, ??? Electron. Lett. 35, 989-990 (1999)
[CrossRef]

IEEE Photon. Technol. Lett. (4)

W. Mao, M. Al-Mumin, X. Wang, and G. Li, ???All-optical enhancement of clock and clock-to-data suppression ratio of NRZ data,??? IEEE Photon. Technol. Lett. 13, 239-241 (2001)
[CrossRef]

A. Bilenca, D. Dahan, J. Lasri, G. Eisenstein, and D. Ritter, ???High bit rate clock recovery of NRZ data by all-optical processing in a semiconductor optical amplifier and direct optical injection locking of a selfoscillating phototransistor, ???IEEE Photon. Technol. Lett. 14, 399-401 (2002)
[CrossRef]

W. Hong, D. Huang, F. Cai, and Y. Wang, ???Simultaneous clock component extraction and wavelength conversion of NRZ signal using an SOA loop mirror,??? IEEE Photon. Technol. Lett. 16, 1116-1118 (2004)
[CrossRef]

P. E. Barnsley, and P. J. Fiddyment, ???Clock extraction using saturable absorption in a semiconductor nonlinear optical amplifier,??? IEEE Photon. Technol. Lett. 3, 832-834 (1991)
[CrossRef]

Other (2)

S. B. Jun, K. J. Park, H. Kim, H. S. Chung, J. H. Lee, and Y. C. Chung, ???Passive optical NRZ-to-RZ converter,??? in Optical Fiber Communications Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2004), Paper ThN1

B. Franz, ???Optical signal processing for very high speed (>40 Gbit/s) ETDM binary NRZ clock recovery,??? in Optical Fiber Communications Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2001), Paper MG1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Temporal pulse shape, decompositions and spectra of electrical (upper) and optical (lower) NRZ signal with finite rise and fall time.

Fig. 2.
Fig. 2.

(a) Experimental setup. PC: polarization controller; MOD: modulator. (b) Transmission spectrum of FBG.

Fig. 3.
Fig. 3.

(a) Measured optical spectrum and (b) Measured RF spectrum of the input 40 Gbit/s NRZ data.

Fig. 4.
Fig. 4.

(a) Measured optical spectrum, (b) Measured RF spectrum, (c) Simulated optical spectrum with resolution of 10 MHz (black) and 7.5 GHz (or 0.06 nm) (blue) and (d) Simulated RF spectrum of the optical carrier-removed signal.

Fig. 5.
Fig. 5.

(a) Measured optical spectrum, (b) Measured RF spectrum, (c) Simulated optical spectrum with resolution of 10 MHz (black) and 7.5 GHz (or 0.06 nm) (blue) and (d) Simulated RF spectrum of the optical clock-component-removed signal.

Fig. 6.
Fig. 6.

(a) Eye diagram of the input 40 Gbit/s NRZ data (20 ps/div) (b) Eye diagram of the optical clock-component-removed signal (20 ps/div).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R ˜ ( f ) = R ( f ) e j 2 π f ( T 2 ) R ( f ) e j 2 π f ( T 2 )
S o ( t ) = A 0 d ( t ) · exp ( j ω c t ) = [ a 0 + n 0 a n exp ( jn ω 0 t ) ] · exp ( j ω c t )
S e ( t ) = a 0 + n 0 a n exp ( jn ω 0 t ) S o ( t ) 2
a N n = 0 , ± N , ± 2 N , a n a n + N + n 0 , ± N , ± 2 N , a n a n + N
a N a 0 ( a N + a N ) + n = 1 N 1 a n a n N

Metrics