Abstract

The photosensitivity to 248nm excimer laser radiation of Er-doped Schott IOG-1 phosphate glass is presented. The photosensitive mechanism is investigated by employing a grating recording process. Index changes of up to ~2.0×10-3 were measured in silver ion-exchanged samples using diffraction efficiency measurements; whereas changes of only ~10-5 were measured for non-ion-exchanged samples. Absorption measurements allowed the identification of specific color center bands, which were attributed to the glass matrix and to the silver ions. Investigation of the exposed ion-exchanged glass using scanning electron microscopy and energy dispersive x-ray microanalysis revealed that in addition to the color centers formed, silver ion migration and ionization contribute significantly to the UV-induced index changes.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B.C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, N. Peyghambarian, ???Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1dB/cm,??? Electron. Lett. 35, 1007-1009 (1999).
    [CrossRef]
  2. D.L. Veasey, D.S. Funk, P.M. Peters, N.A. Sanford, G.E. Obarski, N. Fontaine, M. Young, A.P. Peskin, W.C. Liu, S.N. Houde-Walter, J.S. Hayden, ???Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,??? J. Non-Cryst. Solids 263-264, 369-381 (2000).
    [CrossRef]
  3. S. Blaize, L. Bastard, C. Cassagnetes, J.E. Broquin, ???Multiwavelengths DFB waveguide laser array in Yb- Er codoped phosphate glass substrate,??? IEEE Photon. Technol. Lett. 15, 516-518 (2003).
    [CrossRef]
  4. P. Thamboon, D.M. Krol, ???Second-order optical nonlinearities in thermally poled phosphate glass,??? J. Appl. Phys. 93, 32-7 (2003)
    [CrossRef]
  5. Y. Watanabe, G. Namikawa, T. Onuki, K. Nishio, T. Tsuchiya, ???Photosensitivity in phosphate glass doped with Ag+ upon exposure to near-ultraviolet femtosecond laser pulses,??? Appl. Phys. Lett. 78, 2125-2127 (2001)
    [CrossRef]
  6. Y. Watanabe, M. Inoue, T. Tsuchiya, ???Intensity-dependent photobleaching through bulk oxide glass containing silver particles,??? J. Appl. Phys. 84, 6457-6459 (1998)
    [CrossRef]
  7. J.W. Chan, T.R. Huser, S.H. Risbud, J.S. Hayden, D.M. Krol, ???Waveguide fabrication in phosphate glasses using femtosecond laser pulses,??? Appl. Phys. Lett. 82, 2371-2373 (2003)
    [CrossRef]
  8. S.Pissadakis, L.Reekie, M.N.Zervas, J.S.Wilkinson, ???Sub-micron period relief gratings in InOx thin films and waveguides, patterned using 248nm excimer laser ablation,??? J. Appl. Phys. 95, 1634-41 (2004)
    [CrossRef]
  9. H.M. Smith (Editor), Holographic recording materials 20, Springer-Verlag (1977)
    [CrossRef]
  10. J.-L. Archambault, ???Photorefractive gratings in optical fibres,??? PhD thesis, University of Southampton (1994)
  11. A. Othonos and X. Lee, ???Novel and improved methods of writing Bragg gratings with phase masks,??? IEEE Photon. Technol. Lett. 7, 1183-1185 (1995)
    [CrossRef]
  12. J.L. Archambault, L. Reekie, P.St. J.Russell, ???100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,??? Electron. Lett. 29, 453-5 (1993)
    [CrossRef]
  13. Schott Glass datasheets for IOG-1 glass
  14. D. Ehrt, P. Ebeling, U. Nature, ???UV transmission and radiation-induced defects in phosphate and fluoridephosphate glasses,??? J. Non-Cryst. Solids 263-264, 240-50 (2000)
    [CrossRef]
  15. U. Kreibig, ???Electronic properties of small silver particles: the optical constants and their temperature dependence,??? J. Phys. F: Metal Phys. 4, 999-1013 (1974)
    [CrossRef]
  16. G. Stewart, P.J.R. Laybourn, ???Fabrication of ion-exchanged optical waveguides from dilute silver nitrate melts,??? IEEE J. Quantum Electron. QE-14, 930-4 (1978)
    [CrossRef]
  17. D. Moncke, D. Ehrt, ???Irradiation induced defects in glasses resulting in the photoionization of polyvalent dopants,??? Opt. Mat. 25, 425-37 (2004)
    [CrossRef]

Appl. Phys. Lett. (2)

J.W. Chan, T.R. Huser, S.H. Risbud, J.S. Hayden, D.M. Krol, ???Waveguide fabrication in phosphate glasses using femtosecond laser pulses,??? Appl. Phys. Lett. 82, 2371-2373 (2003)
[CrossRef]

Y. Watanabe, G. Namikawa, T. Onuki, K. Nishio, T. Tsuchiya, ???Photosensitivity in phosphate glass doped with Ag+ upon exposure to near-ultraviolet femtosecond laser pulses,??? Appl. Phys. Lett. 78, 2125-2127 (2001)
[CrossRef]

Electron. Lett. (2)

J.L. Archambault, L. Reekie, P.St. J.Russell, ???100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,??? Electron. Lett. 29, 453-5 (1993)
[CrossRef]

B.C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, N. Peyghambarian, ???Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1dB/cm,??? Electron. Lett. 35, 1007-1009 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Stewart, P.J.R. Laybourn, ???Fabrication of ion-exchanged optical waveguides from dilute silver nitrate melts,??? IEEE J. Quantum Electron. QE-14, 930-4 (1978)
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Blaize, L. Bastard, C. Cassagnetes, J.E. Broquin, ???Multiwavelengths DFB waveguide laser array in Yb- Er codoped phosphate glass substrate,??? IEEE Photon. Technol. Lett. 15, 516-518 (2003).
[CrossRef]

A. Othonos and X. Lee, ???Novel and improved methods of writing Bragg gratings with phase masks,??? IEEE Photon. Technol. Lett. 7, 1183-1185 (1995)
[CrossRef]

J. Appl. Phys. (3)

P. Thamboon, D.M. Krol, ???Second-order optical nonlinearities in thermally poled phosphate glass,??? J. Appl. Phys. 93, 32-7 (2003)
[CrossRef]

S.Pissadakis, L.Reekie, M.N.Zervas, J.S.Wilkinson, ???Sub-micron period relief gratings in InOx thin films and waveguides, patterned using 248nm excimer laser ablation,??? J. Appl. Phys. 95, 1634-41 (2004)
[CrossRef]

Y. Watanabe, M. Inoue, T. Tsuchiya, ???Intensity-dependent photobleaching through bulk oxide glass containing silver particles,??? J. Appl. Phys. 84, 6457-6459 (1998)
[CrossRef]

J. Non-Cryst. Solids (2)

D. Ehrt, P. Ebeling, U. Nature, ???UV transmission and radiation-induced defects in phosphate and fluoridephosphate glasses,??? J. Non-Cryst. Solids 263-264, 240-50 (2000)
[CrossRef]

D.L. Veasey, D.S. Funk, P.M. Peters, N.A. Sanford, G.E. Obarski, N. Fontaine, M. Young, A.P. Peskin, W.C. Liu, S.N. Houde-Walter, J.S. Hayden, ???Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,??? J. Non-Cryst. Solids 263-264, 369-381 (2000).
[CrossRef]

J. Phys. F: Metal Phys. (1)

U. Kreibig, ???Electronic properties of small silver particles: the optical constants and their temperature dependence,??? J. Phys. F: Metal Phys. 4, 999-1013 (1974)
[CrossRef]

Opt. Mat. (1)

D. Moncke, D. Ehrt, ???Irradiation induced defects in glasses resulting in the photoionization of polyvalent dopants,??? Opt. Mat. 25, 425-37 (2004)
[CrossRef]

Other (3)

Schott Glass datasheets for IOG-1 glass

H.M. Smith (Editor), Holographic recording materials 20, Springer-Verlag (1977)
[CrossRef]

J.-L. Archambault, ???Photorefractive gratings in optical fibres,??? PhD thesis, University of Southampton (1994)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Refractive index change vs. AgNO3 concentration in ion-exchange melt for fixed exposures of 400mJ/cm2 energy density and 30000 pulses. Zero concentration refers to the non ion-exchanged glass sample. The green square represents the index change calculated using the Kramers-Kronig relations for the UV exposed non-ion-exchanged glass. The solid line indicates the index change obtained using diffraction efficiency measurements (red circles).

Fig. 2.
Fig. 2.

Silver ion depth distribution obtained by EDX depth scans for ion-exchanged phosphate glass prepared in a NaNO3 melt of 1.0% AgNO3 concentration, before and after exposure to 248nm excimer laser radiation. Red line: ion-distribution before UV exposure. Black line: ion-distribution after exposure to 30000 pulses of 400mJ/cm2 energy density.

Fig. 3.
Fig. 3.

SEM microscan of grating inscribed in ion-exchanged glass, prepared in 1% wt concentration of AgNO3. Exposure conditions: 30000 pulses of 400mJ/cm2 energy density.

Fig. 4.
Fig. 4.

Absorption spectra changes Δα of pure and ion-exchanged Er-doped IOG-1 glass prepared in a NaNO3 melt of 1.0% AgNO3 concentration, due to UV irradiation. Exposure conditions for all glasses: 30000 pulses of 400mJ/cm2 energy density. Data have not been normalized to sample thickness. Absorption change data for wavelengths longer than 650nm are not presented here, since they do not exhibit any significant change.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n = arcsin ( e α d cos Θ η ) λ cos Θ π d eff

Metrics