Abstract

Given its specific thermal characteristics, the sesquioxide crystal Lu2O3 is a particularly promising laser host material. We demonstrate mode locking of a Yb:Lu2O3 laser by use of a semiconductor saturable-absorber mirror. The laser emits up to 470 mW in the picosecond regime, corresponding to a pump efficiency as high as 32%. With dispersion compensation, pulses as short as 220 fs at an average power of 266 mW are obtained at 1033.5 nm. To our knowledge, this is the first demonstration of a femtosecond oscillator based on Yb:Lu2O3.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. F. Brunner, G. J. Spühler, J. Aus der Au, L. Krainer, F. Morier-Genoud, R. Paschotta, N. Lichtenstein, S. Weiss, C. Harder, A. A. Lagatsky, A. Abdolvand, N. V. Kuleshov, and U. Keller, ???Diode-pumped femtosecond Yb:KGd(WO4)2 laser with 1.1-W average power,??? Opt. Lett. 25, 1119 (2000).
    [CrossRef]
  2. C. Hönninger, R. Paschotta M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller; ???Ultrafast ytterbium-doped bulk lasers and laser amplifiers;??? Appl. Phys. B 69, 3 (1999).
    [CrossRef]
  3. P. Klopp, V. Petrov, U. Griebner, and G. Erbert, "Passively mode-locked Yb:KYW laser pumped by a tapered diode laser," Opt. Express 10, 108 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-2-108">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-2-108</a>
    [CrossRef] [PubMed]
  4. F. Druon, S. Chénais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, P. H. Haumesser, B. Viana, D. Vivien, S. Dhellemmes, V. Ortiz, and C. Larat, ???Apatite-structure crystal, Yb3+:SrY4(SiO4)3O, for the development of diode-pumped femtosecond lasers,??? Opt. Lett. 27, 1914 (2002).
    [CrossRef]
  5. M. J. Lederer, M. Hildebrandt, V. Z. Kolev, B. Luther-Davies, B. Taylor, J. Dawes, P. Dekker, J. Piper, H. H. Tan, and C. Jagadish, ???Passive mode locking of a self-frequency-doubling Yb:YAl3(BO3)4 laser,??? Opt. Lett. 27, 436 (2002).
    [CrossRef]
  6. E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, ???60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,??? Opt. Lett. 28, 367 (2003).
    [CrossRef] [PubMed]
  7. K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, ???Rare-earth-doped sesquioxides,??? J. Lum. 87-89, 973 (2000).
    [CrossRef]
  8. K. Petermann, L. Fornasiero, E. Mix, and V. Peters, ???High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,??? Opt. Mat. 19, 67 (2002).
    [CrossRef]
  9. J. Kong, J. Lu, K. Takaichi, T. Uematsu, K. Ueda, D. Y. Tang, D. Y. Shen, H. Yagi, T. Yanagitani, and A. A. Kaminskii, ???Diode-pumped Yb:Y2O3 ceramic laser,??? Appl. Phys. Lett. 82, 2556 (2003).
    [CrossRef]
  10. P. Klopp, U. Griebner, V. Petrov, K. Petermann and V. Peters, in Advanced Solid-State Photonics, OSA Technical Digest, (Optical Society of America, Washington DC, 2003), p. 154-157, P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters and G. Erbert, ???Highly-efficient mode-locked Yb:Sc2O3 laser,??? Opt. Lett. 29, 391 (2004).
  11. A. Shirakawa, H. Yagi, J-F. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. S. Petrov, and A. A. Kaminski, ???Diode-pumped mode-locked Yb3+:Y2O3 ceramic laser???, Opt. Express 11, 2911 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2911.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2911</a>
    [CrossRef] [PubMed]
  12. N. W. Ashcroft, I. Mermin and N. David, in Solid State Physics, Hartcourt Brace College Publishers (1976).
  13. P. H. Klein and W. J. Croft, ???Thermal conductivity, Diffusivity, and Expansion of Y2O3, Y3Al5O12, and LaF3 in the Range 77°-300°K,??? J. Appl. Phys. 38, 1603 (1967).
    [CrossRef]
  14. K. Contag, S. Erhard, A. Giesen, ???Calculation of optimum design parameters for Yb:YAG thin disk lasers,??? OSA Trends Opt. Photonics 34, 124 (2001).
  15. R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, ???A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,??? Appl. Phys. Lett. 83, 1355 (2003).
    [CrossRef]
  16. G. Boulon, A. Brenier, L. Laversenne, Y. Guyot, C. Goutaudier, M.-T. Cohen-Adad, G. Metrat, and N. Muhlstein, ???Search for optimized trivalent ytterbium doped-inorganic crystals for laser applications,??? J. Alloys and Compounds 341, 2 (2002).
    [CrossRef]
  17. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, ???Q-switching stability limits of continuous-wave passive mode locking,??? J. Opt. Soc. Am. B 16, 46 (1999).
    [CrossRef]

Appl. Phys. B (1)

C. Hönninger, R. Paschotta M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller; ???Ultrafast ytterbium-doped bulk lasers and laser amplifiers;??? Appl. Phys. B 69, 3 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

J. Kong, J. Lu, K. Takaichi, T. Uematsu, K. Ueda, D. Y. Tang, D. Y. Shen, H. Yagi, T. Yanagitani, and A. A. Kaminskii, ???Diode-pumped Yb:Y2O3 ceramic laser,??? Appl. Phys. Lett. 82, 2556 (2003).
[CrossRef]

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, ???A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,??? Appl. Phys. Lett. 83, 1355 (2003).
[CrossRef]

J. Alloys and Compounds (1)

G. Boulon, A. Brenier, L. Laversenne, Y. Guyot, C. Goutaudier, M.-T. Cohen-Adad, G. Metrat, and N. Muhlstein, ???Search for optimized trivalent ytterbium doped-inorganic crystals for laser applications,??? J. Alloys and Compounds 341, 2 (2002).
[CrossRef]

J. Appl. Phys. (1)

P. H. Klein and W. J. Croft, ???Thermal conductivity, Diffusivity, and Expansion of Y2O3, Y3Al5O12, and LaF3 in the Range 77°-300°K,??? J. Appl. Phys. 38, 1603 (1967).
[CrossRef]

J. Lum. (1)

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, ???Rare-earth-doped sesquioxides,??? J. Lum. 87-89, 973 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (4)

Opt. Mat. (1)

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, ???High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,??? Opt. Mat. 19, 67 (2002).
[CrossRef]

OSA Technical Digest (1)

P. Klopp, U. Griebner, V. Petrov, K. Petermann and V. Peters, in Advanced Solid-State Photonics, OSA Technical Digest, (Optical Society of America, Washington DC, 2003), p. 154-157, P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters and G. Erbert, ???Highly-efficient mode-locked Yb:Sc2O3 laser,??? Opt. Lett. 29, 391 (2004).

OSA Trends Opt. Photonics (1)

K. Contag, S. Erhard, A. Giesen, ???Calculation of optimum design parameters for Yb:YAG thin disk lasers,??? OSA Trends Opt. Photonics 34, 124 (2001).

Other (1)

N. W. Ashcroft, I. Mermin and N. David, in Solid State Physics, Hartcourt Brace College Publishers (1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Absorption σabs and emission cross section σem of Yb:Lu2O3 and energy-level diagram with the relevant transitions (inset). The points indicate the pump- and laser transitions.

Fig. 2.
Fig. 2.

Setup of the mode-locked Yb: Lu2O3 laser: SAM - saturable absorber mirror; M1 - focusing mirror (ROC=10 to 15 cm); M2, M3 - folding mirrors (ROC=10 cm), P1, P2 - SF6 prisms; M4, M5 - output couplers (T=1 to 5%).

Fig. 3.
Fig. 3.

Autocorrelation trace and spectrum (inset) in the picosecond (a) and in the femtosecond regime (b).

Fig. 4.
Fig. 4.

Output power versus absorbed pump power of the femtosecond Yb:Lu2O3 laser and below the mode-locking threshold (cw – continuous wave).

Tables (1)

Tables Icon

Table 1. Thermal conductivity in W/m/K of different sesquioxide crystals in comparison to YAG with and without Yb-doping. Values in [] are estimated.

Metrics