Abstract

The brightness of cw and quasi cw solid state lasers of conventional designs is limited by stress fracture and uncorrectable phase aberration in thermally loaded stationary gain medium. By introducing physical motion of the gain medium as a new control element in the design of solid state lasers, we show the potential to significantly increase the brightness of cw and quasi cw solid state lasers. In this paper, we develop the design equations of rotary disk lasers and illustrate the design of a 1-kilowatt single mode Yb-YAG rotary disk laser.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. Wickham, J. Anderegg, S. Brosnan, D. Hammons, H. Komine and M. Weber, ???Coherently Coupled High Power Fiber Arrays,??? paper MA4, presented at the Advanced Solid State Photonics Conf., Santa Fe, NM, 2004.
  2. C.H. Liu, A. Galvanauskas, B. Ehlers, F. Doerfel, S. Heinemann, A. Carter, K. Tankala and J. Farroni, ??? 810-W single transverse mode Yb-doped fiber laser,??? paper PD2-1, presented at the Advanced Solid State Photonics Conf., Santa Fe, NM, 2004.
  3. F. Butze, M. Larionov, K. Schuhmann, C. Stolzenburg and A. Giesen, ???Nanosecond pulsed thin disk Yb:YAG lasers,??? paper WA4, presented at the Advanced Solid State Photonics Conf., Santa Fe, NM, 2004.
  4. G. Holleman, G. Harpole, H. Injeyan, R. Moyer, M. Valley, J. Machan, R. St. Pierre, J. Berg and L. Marabella, ???Modelling High Brightness kW Solid State Lasers,??? Proc. SPIE 2989, 15-22 (1997).
    [CrossRef]
  5. M. Rotter, C. Brent Dane, S. Gonzales, R. Merrill, S. Mitchell, C. Parks and R. Yamamoto, ???The solid-state heat-capacity laser,??? paper PD8-1, presented at the Advanced Solid State Photonics Conf., Santa Fe, NM, 2004.
  6. S. Basu and R.L. Byer, ???Fiber coupled diode pumped moving solid state laser,??? U.S. Patent 4,890,289, 1990.
  7. S. Basu, "A high peak and high average power Nd:glass moving slab laser for soft X-ray generation," (Stanford University PhD dissertation, Stanford, CA 1988), pp. 180-188.
  8. S. Basu and R.L. Byer, ???Diode-pumped moving-disc laser: a new configuration for high average power generation,??? Opt. Quantum Electron., 23, 33-37 (1990).
    [CrossRef]
  9. S. Basu, J. Depsky, R.S. Shah and T. Endo, ???Numerical Designs of 100-kW Average Power Solid State Lasers,??? in Modeling and simulation of higher-power laser systems IV, U. Farrukh and S. Basu, eds. , Proc. SPIE 2989, 2-14 (1997).
  10. A. H. Paxton, S.M. Massey, J.B. McKay and H.C. Miller, ???Rotating-Disk Solid-State Lasers, Thermal Properties,??? in Laser Resonators and Beam Control VII , A. Kudryashov, ed., Proc. SPIE 5333, 12-17 (2004).
  11. S. Basu and R.L. Byer, ???40-W average power, 30-Hz moving-slab Nd-glass laser,??? Opt. Lett., 11, 617-619 (1986).
    [CrossRef] [PubMed]
  12. J. Korn, T.H. Jeys and T.Y. Fan, ???Continuous wave operation of a diode-pumped rotating Nd-glass disk laser,??? Opt. Lett., 16(24), 1741-1743 (1991).
    [CrossRef]
  13. S. M. Massey, J.B. McKay, T.H. Russell, A.H. Paxton, S. Basu, and H.C. Miller, ???Diode Pumped Nd:YAG and Nd:Glass Spinning Disk Lasers???, submitted for publication in JOSA B (2004).
  14. S. Basu and H.C. Miller, ???A 40-W single mode Yb-YAG rotary disk laser???, in Solid state and diode laser technology review, S. Ross, ed., (Directed Energy Professional Society, 2004), p. P-43.
  15. T.Y. Fan and R.L. Byer, ???Modeling and cw operation of a quasi-three-level 946 nm Nd:YAG laser,??? IEEE J. Quantum Electron, QE-23, 605-612 (1987).
  16. W.P. Risk, ???Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,??? J. Opt. Soc. Am B, 5, 1412-1423 (1988).
    [CrossRef]
  17. P. Peterson, A. Gavrielides and P. Sharma, ???Cw theory of a laser diode pumped two-manifold solid state laser,??? Opt. Commun., 109, 282-287 (1994).
    [CrossRef]
  18. C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. K. Choi, and G. W. Turner, "Ho:YAG Laser Pumped by 1.9-µm Diode Lasers," IEEE J. Quantum Electron, 31, 1603-1605 (1995).
    [CrossRef]
  19. W.W. Rigrod, ???Saturation effects in high gain lasers,??? J. Appl. Phys., 36, 2487-2490 (1965).
    [CrossRef]
  20. A.E. Siegman, Lasers (University Science Books, 1986).
  21. R.B. Bird et al, Transport Phenomena (John Wiley & Sons, 1960).
  22. J.M. Eggleston, T.J. Kane, K. Kuhn, J. Unternahrer and R.L. Byer, IEEE J. Quantum Electron., ???The slab geometry laser. I-Theory,??? QE-20, 289-301 (1984).
    [CrossRef]
  23. T.Y. Fan, ???Heat generation in Nd:YAG and Yb:YAG,??? IEEE J. Quantum Electron, 29, 1457-1459 (1993).
    [CrossRef]

Advanced Solid State Photonics 2004

M. Wickham, J. Anderegg, S. Brosnan, D. Hammons, H. Komine and M. Weber, ???Coherently Coupled High Power Fiber Arrays,??? paper MA4, presented at the Advanced Solid State Photonics Conf., Santa Fe, NM, 2004.

C.H. Liu, A. Galvanauskas, B. Ehlers, F. Doerfel, S. Heinemann, A. Carter, K. Tankala and J. Farroni, ??? 810-W single transverse mode Yb-doped fiber laser,??? paper PD2-1, presented at the Advanced Solid State Photonics Conf., Santa Fe, NM, 2004.

F. Butze, M. Larionov, K. Schuhmann, C. Stolzenburg and A. Giesen, ???Nanosecond pulsed thin disk Yb:YAG lasers,??? paper WA4, presented at the Advanced Solid State Photonics Conf., Santa Fe, NM, 2004.

M. Rotter, C. Brent Dane, S. Gonzales, R. Merrill, S. Mitchell, C. Parks and R. Yamamoto, ???The solid-state heat-capacity laser,??? paper PD8-1, presented at the Advanced Solid State Photonics Conf., Santa Fe, NM, 2004.

IEEE J. Quantum Electron

T.Y. Fan and R.L. Byer, ???Modeling and cw operation of a quasi-three-level 946 nm Nd:YAG laser,??? IEEE J. Quantum Electron, QE-23, 605-612 (1987).

T.Y. Fan, ???Heat generation in Nd:YAG and Yb:YAG,??? IEEE J. Quantum Electron, 29, 1457-1459 (1993).
[CrossRef]

IEEE J. Quantum Electron.

J.M. Eggleston, T.J. Kane, K. Kuhn, J. Unternahrer and R.L. Byer, IEEE J. Quantum Electron., ???The slab geometry laser. I-Theory,??? QE-20, 289-301 (1984).
[CrossRef]

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. K. Choi, and G. W. Turner, "Ho:YAG Laser Pumped by 1.9-µm Diode Lasers," IEEE J. Quantum Electron, 31, 1603-1605 (1995).
[CrossRef]

J. Appl. Phys.

W.W. Rigrod, ???Saturation effects in high gain lasers,??? J. Appl. Phys., 36, 2487-2490 (1965).
[CrossRef]

J. Opt. Soc. Am B

W.P. Risk, ???Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,??? J. Opt. Soc. Am B, 5, 1412-1423 (1988).
[CrossRef]

Opt. Commun.

P. Peterson, A. Gavrielides and P. Sharma, ???Cw theory of a laser diode pumped two-manifold solid state laser,??? Opt. Commun., 109, 282-287 (1994).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

S. Basu and R.L. Byer, ???Diode-pumped moving-disc laser: a new configuration for high average power generation,??? Opt. Quantum Electron., 23, 33-37 (1990).
[CrossRef]

Proc. SPIE

S. Basu, J. Depsky, R.S. Shah and T. Endo, ???Numerical Designs of 100-kW Average Power Solid State Lasers,??? in Modeling and simulation of higher-power laser systems IV, U. Farrukh and S. Basu, eds. , Proc. SPIE 2989, 2-14 (1997).

A. H. Paxton, S.M. Massey, J.B. McKay and H.C. Miller, ???Rotating-Disk Solid-State Lasers, Thermal Properties,??? in Laser Resonators and Beam Control VII , A. Kudryashov, ed., Proc. SPIE 5333, 12-17 (2004).

G. Holleman, G. Harpole, H. Injeyan, R. Moyer, M. Valley, J. Machan, R. St. Pierre, J. Berg and L. Marabella, ???Modelling High Brightness kW Solid State Lasers,??? Proc. SPIE 2989, 15-22 (1997).
[CrossRef]

Solid state and diode laser tech. review

S. Basu and H.C. Miller, ???A 40-W single mode Yb-YAG rotary disk laser???, in Solid state and diode laser technology review, S. Ross, ed., (Directed Energy Professional Society, 2004), p. P-43.

Other

S. Basu and R.L. Byer, ???Fiber coupled diode pumped moving solid state laser,??? U.S. Patent 4,890,289, 1990.

S. Basu, "A high peak and high average power Nd:glass moving slab laser for soft X-ray generation," (Stanford University PhD dissertation, Stanford, CA 1988), pp. 180-188.

S. M. Massey, J.B. McKay, T.H. Russell, A.H. Paxton, S. Basu, and H.C. Miller, ???Diode Pumped Nd:YAG and Nd:Glass Spinning Disk Lasers???, submitted for publication in JOSA B (2004).

A.E. Siegman, Lasers (University Science Books, 1986).

R.B. Bird et al, Transport Phenomena (John Wiley & Sons, 1960).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of a typical rotary disk laser, and, the coordinate system used in the analysis

Fig. 2.
Fig. 2.

Energy level diagram of Yb-YAG

Fig. 3.
Fig. 3.

(a) Calculated maximum temperature difference within the rotary disk Yb-YAG vs. pump power during laser operation; calculated maximum stress divided by fracture stress of Yb-YAG vs. pump power is shown in secondary y axis; (b) Calculated single-mode output power from a Rotary Disk Yb-YAG laser containing one 45-mm diameter laser disk

Fig. 4.
Fig. 4.

Calculated single-mode output power from a Yb-YAG rotary disk laser containing 3 identical 45-mm diameter laser disks in an unstable resonator cavity with magnification 2.

Tables (1)

Tables Icon

Table 1. Performance of state of the art high brightness solid state lasers

Equations (37)

Equations on this page are rendered with MathJax. Learn more.

B L = P / ( λ ¨ BQ ) ) 2
I = B L π ¨ ( D / f ) 2 / 4
Δ N pump = f 1 pump N 1 f 2 pump N 2
Δ N laser = f 2 laser N 2 f 1 laser N 1
Δ N laser I = ( 1 / ( 2 σ laser ) ) ( ln ( ( 1 L c ) R ) )
N 2 I = ( 1 / ( f 1 laser + f 2 laser ) ) ( Δ N laser I + f 1 laser N 0 L pump )
Δ N pump I = f 1 laser N 0 L pump ( f 1 pump + f 2 pump ) N 2 I =
f 1 laser N 0 L pump ( ( f 1 pump + f 2 pump ) / ( f 1 laser + f 2 laser ) ) ( Δ N laser I + f 1 laser N 0 L pump )
η abs = ( 1 exp ( σ pump Δ N pump I ) ) ( 1 + R pump exp ( σ pump Δ N pump I ) )
η quantum = λ pump / λ laser
η ext = ( 1 R ) / ( ( 1 R ) + L c ( R / ( 1 L c ) )
P th = ( h ν pump N 2 I ( π w p 2 / 2 ) / τ ) / ( η abs η c η overlap )
η slope = η abs η ext η c η overlap η quantum
P out = η slope ( P in P th )
Δ N pump = f 1 pump N 1 f 2 pump N 2 = N 1
Δ N laser = f 2 laser N 2 f 1 laser N 1 = f 2 laser N 2
C p ( T / t + ( V θ / r ) T / θ ) = k ( 1 / r / r ( r T / r ) ) + ( 1 / r 2 ) 2 T / θ 2 + 2 T / z 2 ) + Q
k = k d , ρ = ρ d , C p = C p , d and Q = heat dissipation from pumping
k = k g , ρ = ρ g , C p = C p , g and Q = 0
k = k HS , ρ = ρ HS , C p = C p , HS and Q = 0
k 2 T z 2 + Q . = 0
T / z = 0 at z = 0 ; and , k d T / z in disk = k g T / z in gas at z = t d / 2
P h = F eh ( 1 λ pump / λ laser ) η abs P in
V p = 4 π w p r p t d
Q = P h / V p
T = T HS + ( P h / V p ) t g t d / ( 2 k g ) + ( ( P h / V p ) / 8 k d ) ( t d 2 4 z 2 )
T max = T HS + ( P h / V p ) t g t d / ( 2 k g ) + ( P h / V p ) t d 2 / 8 k d )
T diff , max = ( P h / V p ) t d 2 / 8 k d
σ max = ( P h / V p ) t d 2 / 12 M s
t pump = 2 w p / ( 2 π r p ν rot )
Δ T pumped region = P h / ( π 2 w p t d r p C p ν rot )
f decay = exp ( t / τ lifetime )
2 w p , rot = 2 w p + 2 π r p ν rot τ lifetime
ν rot , max = w p / ( π r p τ lifetime )
A h ( rotary ) = 8 π w p r p
A h ( stationary ) = 2 π w p 2
S = A h ( rotary ) / A h ( stationary ) = 8 π w p r p / 2 π w p 2 = 4 r p / w p

Metrics