Abstract

The use of surface-plasmon polariton (SPP) resonance in the optical near field of a metallic mask to produce fine patterns with a resolution of subwavelength scale is proposed. Preliminary numerical simulations indicate that the critical resolution is determined mainly by the thickness of the metallic mask. The surface of the metallic mask on the illuminated side collects light through SPP coupling, and the interference of SPPs on the exit side of the metallic mask results in enhanced optical intensity with high spatial resolution, which can facilitate nanolithography efficiently by use of conventional photoresist with simple visible or ultraviolet light sources. Several schemes for sub-half-wavelength lithography based on SPPs are described. Inasmuch as the technique is not diffraction limited, nanostructures can be reproduced photolithographically.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. D. Levenson, ???Extending the lifetime of optical lithography technologies with wavefront engineering,??? Jpn. J. Appl. Phys. 33, 6765-6773 (1994).
    [CrossRef]
  2. M. V. Klein, Optics (Wiley, New York, 1970).
  3. S.Okazaki, ???Resolution limits of optical lithography,??? J. Vac. Sci. Technol. B 9, 2829-2833 (1991).
    [CrossRef]
  4. M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, and C. Van Peski, ???157 nm: deepest deep-ultraviolet yet,??? J. Vac. Sci. Technol. B 17, 3262-3266 (1999).
    [CrossRef]
  5. C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, ???Extreme ultraviolet lithography,??? J. Vac. Sci. Technol. B 16, 3142-3149 (1998).
    [CrossRef]
  6. J. P. Silverman, ???Challenges and progress in x-ray lithography,??? J. Vac. Sci. Technol. B 16, 3137-3141 (1998).
    [CrossRef]
  7. G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, ???Using light as a lens for submicron, neutral-atom lithography,??? Phys. Rev. Lett. 69, 1636-1639 (1992).
    [CrossRef] [PubMed]
  8. K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Heig, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, ???Microlithography using neutral metastable atoms and self-assembled monolayers,??? Science 269, 1255-1257 (1995).
    [CrossRef] [PubMed]
  9. K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R.Younkin, and M. Prentiss, ???Formation and detection of atomic wavepackets localized to the Heisenberg uncertainty limit: a new nanolithographic technique,??? Science 280, 1583- 1586 (1998).
    [CrossRef] [PubMed]
  10. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, ???Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,??? Phys. Rev. Lett. 85, 2733-2736 (2000).
    [CrossRef] [PubMed]
  11. M. A. McCord, ???Electron beam lithography for 0.13 µm manufacturing,??? J. Vac. Sci. Technol. B 15, 2125???2129 (1997).
    [CrossRef]
  12. J. Melngailis, ???Focused ion beam lithography,??? Nucl. Instrum. Methods Phys. Res. B 80, 1271-1280 (1993).
    [CrossRef]
  13. M. A. McCord and R. F. W. Pease, ???Lithography with the scanning tunneling microscope,??? J. Vac. Sci. Technol. B 4, 86-88 (1986).
    [CrossRef]
  14. E. Betzig and J. K. Trautman, ???Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,??? Science 257, 189-195 (1992).
    [CrossRef] [PubMed]
  15. S. Y Chou, P. R. Krauss, and P. J. Renstrom, ???Nanoimprint lithography,??? J. Vac. Sci. Technol. B 14, 4129-4133 (1998).
    [CrossRef]
  16. H. Tan, A. Gilbertson, and S. Y. Chou, ???Roller nanoimprint lithography,??? J. Vac. Sci. Technol. B 16, 3926???3928 (1998).
    [CrossRef]
  17. H. Schmid, H. Biebuyck, B. Michel, and O. J. F. Martin, ???Light-coupling masks for lensless, subwavelength optical lithography,??? Appl. Phys. Lett. 72, 2379-2381 (1998).
    [CrossRef]
  18. J. G. Goodberlet, ???Patterning 100 nm features using deep-ultraviolet contact photolithography,??? Appl. Phys. Lett. 76, 667-669 (2000).
    [CrossRef]
  19. J. G. Goodberlet and H. Kavak, ???Patterning sub-50 nm features with near-field embedded-amplitude masks,??? Appl. Phys. Lett. 81, 1315-1317 (2002).
    [CrossRef]
  20. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, ???Sub-diffraction-limited patterning using evanescent near-field optical lithography,??? Appl. Phys. Lett. 75, 3560-3562 (1999).
    [CrossRef]
  21. P. G. Kik, A. L. Martin, S. A. Maier, and H. A. Atwater, ???Metal nanoparticle arrays for near field optical lithography,??? in Properties of Metal Nanostructures, N. J. Halas, ed., Proc. SPIE 4810, 7-13 (2002).
  22. O. J. Martin, N. B. Piller, H. Schmid, H. Biebuyck, and B. Michel, "Energy flow in light-coupling masks for lensless optical lithography," Opt. Express 3, 280-285 (1998), <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-7-280"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-7-280</a.
    [CrossRef] [PubMed]
  23. H. A. Bethe, ???Theory of diffraction by small holes,??? Phys. Rev. 6, 163-182 (1944).
    [CrossRef]
  24. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Heidelberg, 1988), Chap. 2, pp. 4-39.
  25. G. G. Nenninger, P. Tobiška, J. Homola, and S. S. Yee, ???Long-range surface plasmons for high-resolution surface plasmon resonance sensors,??? Sensors Actuators 74, 145-151 (2001).
    [CrossRef]
  26. W. L. Barnes, S. C. Kitson, T. W. Preist, and J. R. Sambles," Photonic surfaces for surface plasmon-polaritons," J. Opt. Soc. Am. A 14, 1654-1661 (1997).
    [CrossRef]
  27. F. Yang, J. R. G. Sambles, and W. Bradberry, ??? Long-range surface modes supported by thin films,??? Phys. Rev. B. 44, 5855- 5872 (1991).
    [CrossRef]
  28. P. B. Johnson and R. W. Christy, ???Optical constants of the noble metals,??? Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  29. T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, ???Extraordinary optical transmission through sub-wavelength hole arrays,??? Nature (London) 391, 667- 669 (1998).
    [CrossRef]
  30. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, ???Surface plasmons enhance optical transmission through subwavelength holes,??? Phys Rev. B 58, 6779-6782 (1998).
    [CrossRef]
  31. L. Salomon, F. Grillot, A. Zayats, and F. De Fornel, ???Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,??? Phys. Rev. Lett. 86, 1110-1113 (2001).
    [CrossRef] [PubMed]
  32. E. Popov, M. Neviere, S. Enoch, and R. Reinisch, ???Theory of light transmission through subwavelength periodic hole arrays,??? Phys. Rev. B 62, 16-100,108 (2000).
    [CrossRef]
  33. U. Schroter and D. Heitmann, ???Surface-plasmon-enhanced transmission through metallic gratings,??? Phys. Rev. B 58, 15, 419-421(1998).
    [CrossRef]
  34. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, ???Theory of extraordinary optical transmission through subwavelength hole arrays,??? Phys. Rev. Lett. 86, 1114-1117 (2001).
    [CrossRef] [PubMed]
  35. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, ???Transmission resonances on metallic gratings with very narrow slits,??? Phys. Rev. Lett. 83, 2845-2848 (1999).
    [CrossRef]
  36. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, ???Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,??? Phys. Rev. Lett. 92, 107401 (2004)
    [CrossRef] [PubMed]
  37. M. G. Moharam and T. K. Gaylord, ???Rigorous coupled-wave analysis of metallic surface-relief gratings,??? J. Opt. Soc. Am. A 3, 1780-1787 (1986).
    [CrossRef]
  38. S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. V. Ryu, and Q. H. Park, ???Light emission from the shadows: surface plasmon nano-optics at near and far fields,??? Appl. Phys. Lett. 81, 3239-3241 (2002).
    [CrossRef]
  39. X. Luo and T. Ishihara, ???Resonant light transmission in metallic photonic crystal slabs,??? Int. J. Nanosci. 1, 657-661 (2002).
    [CrossRef]
  40. J. B. Pendry, ???Negative refraction makes a perfect lens,??? Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]

Appl. Phys. Lett. (5)

H. Schmid, H. Biebuyck, B. Michel, and O. J. F. Martin, ???Light-coupling masks for lensless, subwavelength optical lithography,??? Appl. Phys. Lett. 72, 2379-2381 (1998).
[CrossRef]

J. G. Goodberlet, ???Patterning 100 nm features using deep-ultraviolet contact photolithography,??? Appl. Phys. Lett. 76, 667-669 (2000).
[CrossRef]

J. G. Goodberlet and H. Kavak, ???Patterning sub-50 nm features with near-field embedded-amplitude masks,??? Appl. Phys. Lett. 81, 1315-1317 (2002).
[CrossRef]

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, ???Sub-diffraction-limited patterning using evanescent near-field optical lithography,??? Appl. Phys. Lett. 75, 3560-3562 (1999).
[CrossRef]

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. V. Ryu, and Q. H. Park, ???Light emission from the shadows: surface plasmon nano-optics at near and far fields,??? Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

Int. J. Nanosci. (1)

X. Luo and T. Ishihara, ???Resonant light transmission in metallic photonic crystal slabs,??? Int. J. Nanosci. 1, 657-661 (2002).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Vac. Sci. Technol B. (1)

C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, ???Extreme ultraviolet lithography,??? J. Vac. Sci. Technol. B 16, 3142-3149 (1998).
[CrossRef]

J. Vac. Sci. Technol. B (6)

J. P. Silverman, ???Challenges and progress in x-ray lithography,??? J. Vac. Sci. Technol. B 16, 3137-3141 (1998).
[CrossRef]

S.Okazaki, ???Resolution limits of optical lithography,??? J. Vac. Sci. Technol. B 9, 2829-2833 (1991).
[CrossRef]

M. A. McCord, ???Electron beam lithography for 0.13 µm manufacturing,??? J. Vac. Sci. Technol. B 15, 2125???2129 (1997).
[CrossRef]

M. A. McCord and R. F. W. Pease, ???Lithography with the scanning tunneling microscope,??? J. Vac. Sci. Technol. B 4, 86-88 (1986).
[CrossRef]

S. Y Chou, P. R. Krauss, and P. J. Renstrom, ???Nanoimprint lithography,??? J. Vac. Sci. Technol. B 14, 4129-4133 (1998).
[CrossRef]

H. Tan, A. Gilbertson, and S. Y. Chou, ???Roller nanoimprint lithography,??? J. Vac. Sci. Technol. B 16, 3926???3928 (1998).
[CrossRef]

J. Vac. Sci. Technol. B. (1)

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, and C. Van Peski, ???157 nm: deepest deep-ultraviolet yet,??? J. Vac. Sci. Technol. B 17, 3262-3266 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. D. Levenson, ???Extending the lifetime of optical lithography technologies with wavefront engineering,??? Jpn. J. Appl. Phys. 33, 6765-6773 (1994).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, ???Extraordinary optical transmission through sub-wavelength hole arrays,??? Nature (London) 391, 667- 669 (1998).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

J. Melngailis, ???Focused ion beam lithography,??? Nucl. Instrum. Methods Phys. Res. B 80, 1271-1280 (1993).
[CrossRef]

Opt. Express (1)

Phys. Rev. (1)

H. A. Bethe, ???Theory of diffraction by small holes,??? Phys. Rev. 6, 163-182 (1944).
[CrossRef]

Phys. Rev. B (5)

F. Yang, J. R. G. Sambles, and W. Bradberry, ??? Long-range surface modes supported by thin films,??? Phys. Rev. B. 44, 5855- 5872 (1991).
[CrossRef]

P. B. Johnson and R. W. Christy, ???Optical constants of the noble metals,??? Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, ???Surface plasmons enhance optical transmission through subwavelength holes,??? Phys Rev. B 58, 6779-6782 (1998).
[CrossRef]

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, ???Theory of light transmission through subwavelength periodic hole arrays,??? Phys. Rev. B 62, 16-100,108 (2000).
[CrossRef]

U. Schroter and D. Heitmann, ???Surface-plasmon-enhanced transmission through metallic gratings,??? Phys. Rev. B 58, 15, 419-421(1998).
[CrossRef]

Phys. Rev. Lett. (7)

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, ???Theory of extraordinary optical transmission through subwavelength hole arrays,??? Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, ???Transmission resonances on metallic gratings with very narrow slits,??? Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, ???Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,??? Phys. Rev. Lett. 92, 107401 (2004)
[CrossRef] [PubMed]

L. Salomon, F. Grillot, A. Zayats, and F. De Fornel, ???Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,??? Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

J. B. Pendry, ???Negative refraction makes a perfect lens,??? Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, ???Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,??? Phys. Rev. Lett. 85, 2733-2736 (2000).
[CrossRef] [PubMed]

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, ???Using light as a lens for submicron, neutral-atom lithography,??? Phys. Rev. Lett. 69, 1636-1639 (1992).
[CrossRef] [PubMed]

Proc. SPIE (1)

P. G. Kik, A. L. Martin, S. A. Maier, and H. A. Atwater, ???Metal nanoparticle arrays for near field optical lithography,??? in Properties of Metal Nanostructures, N. J. Halas, ed., Proc. SPIE 4810, 7-13 (2002).

Science (3)

E. Betzig and J. K. Trautman, ???Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,??? Science 257, 189-195 (1992).
[CrossRef] [PubMed]

K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Heig, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, ???Microlithography using neutral metastable atoms and self-assembled monolayers,??? Science 269, 1255-1257 (1995).
[CrossRef] [PubMed]

K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R.Younkin, and M. Prentiss, ???Formation and detection of atomic wavepackets localized to the Heisenberg uncertainty limit: a new nanolithographic technique,??? Science 280, 1583- 1586 (1998).
[CrossRef] [PubMed]

Sensors Actuators (1)

G. G. Nenninger, P. Tobiška, J. Homola, and S. S. Yee, ???Long-range surface plasmons for high-resolution surface plasmon resonance sensors,??? Sensors Actuators 74, 145-151 (2001).
[CrossRef]

Other (2)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Heidelberg, 1988), Chap. 2, pp. 4-39.

M. V. Klein, Optics (Wiley, New York, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

a, Schematic representation of SPPL. b, Schematic representation of resolution enhancement by SPPL.

Fig. 2.
Fig. 2.

Dispersion of SSPs on several masks.

Fig. 3.
Fig. 3.

Resolution of surface-plasmon polaritonic interference.

Fig. 4.
Fig. 4.

Electric field distributions for four masks.

Fig. 5.
Fig. 5.

Electric field distribution of SPPs for a symmetric unperforated plasmon mask.

Fig. 6.
Fig. 6.

Electric field distribution of SPPs in an asymmetric unperforated plasmon mask.

Fig. 7.
Fig. 7.

Resolution of SPPL for a thin metallic film.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

k sp = ω ( ε d ε m ( ε d + ε m ) ) 1 2 c ,
tanh ( α 2 d ) = ε 2 α 2 ( ε 1 α 3 + ε 3 α 1 ) ( ε 1 ε 3 α 2 2 + ε 2 2 α 1 α 3 )
α 2 j = k 2 k 2 0 ε j , j = 1 , 2 , 3 ,
k = k r i k i
k sp = k x ± m x G x ± m y ± G y ,
λ = 2 π ( ε d ε m ( ε d + ε m ) ) 1 2 m x G x

Metrics