Abstract

The use of surface-plasmon polariton (SPP) resonance in the optical near field of a metallic mask to produce fine patterns with a resolution of subwavelength scale is proposed. Preliminary numerical simulations indicate that the critical resolution is determined mainly by the thickness of the metallic mask. The surface of the metallic mask on the illuminated side collects light through SPP coupling, and the interference of SPPs on the exit side of the metallic mask results in enhanced optical intensity with high spatial resolution, which can facilitate nanolithography efficiently by use of conventional photoresist with simple visible or ultraviolet light sources. Several schemes for sub-half-wavelength lithography based on SPPs are described. Inasmuch as the technique is not diffraction limited, nanostructures can be reproduced photolithographically.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Levenson, “Extending the lifetime of optical lithography technologies with wavefront engineering,” Jpn. J. Appl. Phys. 33, 6765–6773 (1994).
    [CrossRef]
  2. M. V. Klein, Optics (Wiley, New York, 1970).
  3. S. Okazaki, “Resolution limits of optical lithography,” J. Vac. Sci. Technol. B 9, 2829–2833 (1991).
    [CrossRef]
  4. M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, and C. Van Peski, “157 nm: deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
    [CrossRef]
  5. C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, “Extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 16, 3142–3149 (1998).
    [CrossRef]
  6. J. P. Silverman, “Challenges and progress in x-ray lithography,” J. Vac. Sci. Technol. B 16, 3137–3141 (1998).
    [CrossRef]
  7. G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69, 1636–1639 (1992).
    [CrossRef] [PubMed]
  8. K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Heig, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, “Microlithography using neutral metastable atoms and self-assembled monolayers,” Science 269, 1255–1257 (1995).
    [CrossRef] [PubMed]
  9. K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, and M. Prentiss, “Formation and detection of atomic wavepackets localized to the Heisenberg uncertainty limit: a new nanolithographic technique,” Science 280, 1583–1586 (1998).
    [CrossRef] [PubMed]
  10. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
    [CrossRef] [PubMed]
  11. M. A. McCord, “Electron beam lithography for 0.13 µm manufacturing,” J. Vac. Sci. Technol. B 15, 2125–2129 (1997).
    [CrossRef]
  12. J. Melngailis, “Focused ion beam lithography,” Nucl. Instrum. Methods Phys. Res. B 80, 1271–1280 (1993).
    [CrossRef]
  13. M. A. McCord and R. F. W. Pease, “Lithography with the scanning tunneling microscope,” J. Vac. Sci. Technol. B 4, 86–88 (1986).
    [CrossRef]
  14. E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
    [CrossRef] [PubMed]
  15. S. Y Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1998).
    [CrossRef]
  16. H. Tan, A. Gilbertson, and S. Y. Chou, “Roller nanoimprint lithography,” J. Vac. Sci. Technol. B 16, 3926–3928 (1998).
    [CrossRef]
  17. H. Schmid, H. Biebuyck, B. Michel, and O. J. F. Martin, “Light-coupling masks for lensless, subwavelength optical lithography,” Appl. Phys. Lett. 72, 2379–2381 (1998).
    [CrossRef]
  18. J. G. Goodberlet, “Patterning 100 nm features using deep-ultraviolet contact photolithography,” Appl. Phys. Lett. 76, 667–669 (2000).
    [CrossRef]
  19. J. G. Goodberlet and H. Kavak, “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81, 1315–1317 (2002).
    [CrossRef]
  20. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999).
    [CrossRef]
  21. P. G. Kik, A. L. Martin, S. A. Maier, and H. A. Atwater, “Metal nanoparticle arrays for near field optical lithography,” in Properties of Metal Nanostructures, N. J. Halas, ed., Proc. SPIE4810, 7–13 (2002).
  22. O. J. Martin, N. B. Piller, H. Schmid, H. Biebuyck, and B. Michel, “Energy flow in light-coupling masks for lensless optical lithography,” Opt. Express 3, 280–285 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-7-280
    [CrossRef] [PubMed]
  23. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 6, 163–182 (1944).
    [CrossRef]
  24. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Heidelberg, 1988), Chap. 2, pp. 4–39.
  25. G. G. Nenninger, P. Tobiška, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sensors Actuators 74, 145–151 (2001).
    [CrossRef]
  26. W. L. Barnes, S. C. Kitson, T. W. Preist, and J. R. Sambles,“Photonic surfaces for surface plasmon-polaritons,” J. Opt. Soc. Am. A 14, 1654–1661 (1997).
    [CrossRef]
  27. F. Yang, J. R. G. Sambles, and W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B. 44, 5855–5872 (1991).
    [CrossRef]
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  29. T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
    [CrossRef]
  30. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys Rev. B 58, 6779–6782 (1998).
    [CrossRef]
  31. L. Salomon, F. Grillot, A. Zayats, and F. De Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
    [CrossRef] [PubMed]
  32. E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16,100–16,108 (2000).
    [CrossRef]
  33. U. Schroter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15,419–15,421(1998).
    [CrossRef]
  34. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
    [CrossRef] [PubMed]
  35. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [CrossRef]
  36. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004)
    [CrossRef] [PubMed]
  37. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
    [CrossRef]
  38. S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. V. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
    [CrossRef]
  39. X. Luo and T. Ishihara, “Resonant light transmission in metallic photonic crystal slabs,” Int. J. Nanosci. 1, 657–661 (2002).
    [CrossRef]
  40. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef] [PubMed]

2004 (1)

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004)
[CrossRef] [PubMed]

2002 (3)

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. V. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

X. Luo and T. Ishihara, “Resonant light transmission in metallic photonic crystal slabs,” Int. J. Nanosci. 1, 657–661 (2002).
[CrossRef]

J. G. Goodberlet and H. Kavak, “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81, 1315–1317 (2002).
[CrossRef]

2001 (3)

L. Salomon, F. Grillot, A. Zayats, and F. De Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

G. G. Nenninger, P. Tobiška, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sensors Actuators 74, 145–151 (2001).
[CrossRef]

2000 (4)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16,100–16,108 (2000).
[CrossRef]

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[CrossRef] [PubMed]

J. G. Goodberlet, “Patterning 100 nm features using deep-ultraviolet contact photolithography,” Appl. Phys. Lett. 76, 667–669 (2000).
[CrossRef]

1999 (3)

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, and C. Van Peski, “157 nm: deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

1998 (10)

U. Schroter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15,419–15,421(1998).
[CrossRef]

T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys Rev. B 58, 6779–6782 (1998).
[CrossRef]

C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, “Extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 16, 3142–3149 (1998).
[CrossRef]

J. P. Silverman, “Challenges and progress in x-ray lithography,” J. Vac. Sci. Technol. B 16, 3137–3141 (1998).
[CrossRef]

K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, and M. Prentiss, “Formation and detection of atomic wavepackets localized to the Heisenberg uncertainty limit: a new nanolithographic technique,” Science 280, 1583–1586 (1998).
[CrossRef] [PubMed]

S. Y Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1998).
[CrossRef]

H. Tan, A. Gilbertson, and S. Y. Chou, “Roller nanoimprint lithography,” J. Vac. Sci. Technol. B 16, 3926–3928 (1998).
[CrossRef]

H. Schmid, H. Biebuyck, B. Michel, and O. J. F. Martin, “Light-coupling masks for lensless, subwavelength optical lithography,” Appl. Phys. Lett. 72, 2379–2381 (1998).
[CrossRef]

O. J. Martin, N. B. Piller, H. Schmid, H. Biebuyck, and B. Michel, “Energy flow in light-coupling masks for lensless optical lithography,” Opt. Express 3, 280–285 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-7-280
[CrossRef] [PubMed]

1997 (2)

M. A. McCord, “Electron beam lithography for 0.13 µm manufacturing,” J. Vac. Sci. Technol. B 15, 2125–2129 (1997).
[CrossRef]

W. L. Barnes, S. C. Kitson, T. W. Preist, and J. R. Sambles,“Photonic surfaces for surface plasmon-polaritons,” J. Opt. Soc. Am. A 14, 1654–1661 (1997).
[CrossRef]

1995 (1)

K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Heig, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, “Microlithography using neutral metastable atoms and self-assembled monolayers,” Science 269, 1255–1257 (1995).
[CrossRef] [PubMed]

1994 (1)

M. D. Levenson, “Extending the lifetime of optical lithography technologies with wavefront engineering,” Jpn. J. Appl. Phys. 33, 6765–6773 (1994).
[CrossRef]

1993 (1)

J. Melngailis, “Focused ion beam lithography,” Nucl. Instrum. Methods Phys. Res. B 80, 1271–1280 (1993).
[CrossRef]

1992 (2)

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef] [PubMed]

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69, 1636–1639 (1992).
[CrossRef] [PubMed]

1991 (2)

S. Okazaki, “Resolution limits of optical lithography,” J. Vac. Sci. Technol. B 9, 2829–2833 (1991).
[CrossRef]

F. Yang, J. R. G. Sambles, and W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B. 44, 5855–5872 (1991).
[CrossRef]

1986 (2)

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
[CrossRef]

M. A. McCord and R. F. W. Pease, “Lithography with the scanning tunneling microscope,” J. Vac. Sci. Technol. B 4, 86–88 (1986).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 6, 163–182 (1944).
[CrossRef]

Abrams, D. S.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[CrossRef] [PubMed]

Alkaisi, M. M.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999).
[CrossRef]

Attwood, D.

C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, “Extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 16, 3142–3149 (1998).
[CrossRef]

Atwater, H. A.

P. G. Kik, A. L. Martin, S. A. Maier, and H. A. Atwater, “Metal nanoparticle arrays for near field optical lithography,” in Properties of Metal Nanostructures, N. J. Halas, ed., Proc. SPIE4810, 7–13 (2002).

Bard, A.

K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Heig, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, “Microlithography using neutral metastable atoms and self-assembled monolayers,” Science 269, 1255–1257 (1995).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004)
[CrossRef] [PubMed]

W. L. Barnes, S. C. Kitson, T. W. Preist, and J. R. Sambles,“Photonic surfaces for surface plasmon-polaritons,” J. Opt. Soc. Am. A 14, 1654–1661 (1997).
[CrossRef]

Bates, A. K.

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, and C. Van Peski, “157 nm: deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

Behringer, R. E.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69, 1636–1639 (1992).
[CrossRef] [PubMed]

Berggren, K. K.

K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, and M. Prentiss, “Formation and detection of atomic wavepackets localized to the Heisenberg uncertainty limit: a new nanolithographic technique,” Science 280, 1583–1586 (1998).
[CrossRef] [PubMed]

K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Heig, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, “Microlithography using neutral metastable atoms and self-assembled monolayers,” Science 269, 1255–1257 (1995).
[CrossRef] [PubMed]

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69, 1636–1639 (1992).
[CrossRef] [PubMed]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 6, 163–182 (1944).
[CrossRef]

Betzig, E.

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef] [PubMed]

Biebuyck, H.

Blaikie, R. J.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999).
[CrossRef]

Bloomstein, T. M.

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, and C. Van Peski, “157 nm: deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

Boto, A. N.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[CrossRef] [PubMed]

Bradberry, W.

F. Yang, J. R. G. Sambles, and W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B. 44, 5855–5872 (1991).
[CrossRef]

Braunstein, S. L.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[CrossRef] [PubMed]

Cheung, R.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999).
[CrossRef]

Chou, S. Y

S. Y Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1998).
[CrossRef]

Chou, S. Y.

H. Tan, A. Gilbertson, and S. Y. Chou, “Roller nanoimprint lithography,” J. Vac. Sci. Technol. B 16, 3926–3928 (1998).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Chu, A. P.

K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, and M. Prentiss, “Formation and detection of atomic wavepackets localized to the Heisenberg uncertainty limit: a new nanolithographic technique,” Science 280, 1583–1586 (1998).
[CrossRef] [PubMed]

Cumming, D. R. S.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999).
[CrossRef]

Cunningham, J. E.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69, 1636–1639 (1992).
[CrossRef] [PubMed]

Curtin, J. E.

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, and C. Van Peski, “157 nm: deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

De Fornel, F.

L. Salomon, F. Grillot, A. Zayats, and F. De Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[CrossRef] [PubMed]

Dekker, N. H.

K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, and M. Prentiss, “Formation and detection of atomic wavepackets localized to the Heisenberg uncertainty limit: a new nanolithographic technique,” Science 280, 1583–1586 (1998).
[CrossRef] [PubMed]

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004)
[CrossRef] [PubMed]

Dintinger, J.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004)
[CrossRef] [PubMed]

Dowling, J. P.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[CrossRef] [PubMed]

Downs, D. K.

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, and C. Van Peski, “157 nm: deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004)
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys Rev. B 58, 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Enoch, S.

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16,100–16,108 (2000).
[CrossRef]

Fedynyshyn, T. H.

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, and C. Van Peski, “157 nm: deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

Garcia-Vidal, F. J.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Gaylord, T. K.

Ghaemi, H. F.

T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys Rev. B 58, 6779–6782 (1998).
[CrossRef]

Gilbertson, A.

H. Tan, A. Gilbertson, and S. Y. Chou, “Roller nanoimprint lithography,” J. Vac. Sci. Technol. B 16, 3926–3928 (1998).
[CrossRef]

Gillaspy, J. D.

K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Heig, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, “Microlithography using neutral metastable atoms and self-assembled monolayers,” Science 269, 1255–1257 (1995).
[CrossRef] [PubMed]

Goodberlet, J. G.

J. G. Goodberlet and H. Kavak, “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81, 1315–1317 (2002).
[CrossRef]

J. G. Goodberlet, “Patterning 100 nm features using deep-ultraviolet contact photolithography,” Appl. Phys. Lett. 76, 667–669 (2000).
[CrossRef]

Grillot, F.

L. Salomon, F. Grillot, A. Zayats, and F. De Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[CrossRef] [PubMed]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys Rev. B 58, 6779–6782 (1998).
[CrossRef]

Gwyn, C. W.

C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, “Extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 16, 3142–3149 (1998).
[CrossRef]

Hardy, D. E.

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, and C. Van Peski, “157 nm: deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

Heig, A. G.

K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Heig, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, “Microlithography using neutral metastable atoms and self-assembled monolayers,” Science 269, 1255–1257 (1995).
[CrossRef] [PubMed]

Heitmann, D.

U. Schroter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15,419–15,421(1998).
[CrossRef]

Hohng, S. C.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. V. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Homola, J.

G. G. Nenninger, P. Tobiška, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sensors Actuators 74, 145–151 (2001).
[CrossRef]

Ishihara, T.

X. Luo and T. Ishihara, “Resonant light transmission in metallic photonic crystal slabs,” Int. J. Nanosci. 1, 657–661 (2002).
[CrossRef]

Johnson, K. S.

K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, and M. Prentiss, “Formation and detection of atomic wavepackets localized to the Heisenberg uncertainty limit: a new nanolithographic technique,” Science 280, 1583–1586 (1998).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kavak, H.

J. G. Goodberlet and H. Kavak, “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81, 1315–1317 (2002).
[CrossRef]

Kik, P. G.

P. G. Kik, A. L. Martin, S. A. Maier, and H. A. Atwater, “Metal nanoparticle arrays for near field optical lithography,” in Properties of Metal Nanostructures, N. J. Halas, ed., Proc. SPIE4810, 7–13 (2002).

Kim, D. S.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. V. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Kim, J.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. V. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Kitson, S. C.

Klein, M. V.

M. V. Klein, Optics (Wiley, New York, 1970).

Kok, P.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[CrossRef] [PubMed]

Krauss, P. R.

S. Y Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1998).
[CrossRef]

Kunz, R. R.

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, and C. Van Peski, “157 nm: deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

Levenson, M. D.

M. D. Levenson, “Extending the lifetime of optical lithography technologies with wavefront engineering,” Jpn. J. Appl. Phys. 33, 6765–6773 (1994).
[CrossRef]

Lezec, H. J.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys Rev. B 58, 6779–6782 (1998).
[CrossRef]

Lezec, H. L.

T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Liberman, V.

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, and C. Van Peski, “157 nm: deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

Lienau, C.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. V. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Luo, X.

X. Luo and T. Ishihara, “Resonant light transmission in metallic photonic crystal slabs,” Int. J. Nanosci. 1, 657–661 (2002).
[CrossRef]

Maier, S. A.

P. G. Kik, A. L. Martin, S. A. Maier, and H. A. Atwater, “Metal nanoparticle arrays for near field optical lithography,” in Properties of Metal Nanostructures, N. J. Halas, ed., Proc. SPIE4810, 7–13 (2002).

Malyarchuk, V.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. V. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Martin, A. L.

P. G. Kik, A. L. Martin, S. A. Maier, and H. A. Atwater, “Metal nanoparticle arrays for near field optical lithography,” in Properties of Metal Nanostructures, N. J. Halas, ed., Proc. SPIE4810, 7–13 (2002).

Martin, O. J.

Martin, O. J. F.

H. Schmid, H. Biebuyck, B. Michel, and O. J. F. Martin, “Light-coupling masks for lensless, subwavelength optical lithography,” Appl. Phys. Lett. 72, 2379–2381 (1998).
[CrossRef]

Martin-Moreno, L.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

McClelland, J. J.

K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Heig, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, “Microlithography using neutral metastable atoms and self-assembled monolayers,” Science 269, 1255–1257 (1995).
[CrossRef] [PubMed]

McCord, M. A.

M. A. McCord, “Electron beam lithography for 0.13 µm manufacturing,” J. Vac. Sci. Technol. B 15, 2125–2129 (1997).
[CrossRef]

M. A. McCord and R. F. W. Pease, “Lithography with the scanning tunneling microscope,” J. Vac. Sci. Technol. B 4, 86–88 (1986).
[CrossRef]

McNab, S. J.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999).
[CrossRef]

Melngailis, J.

J. Melngailis, “Focused ion beam lithography,” Nucl. Instrum. Methods Phys. Res. B 80, 1271–1280 (1993).
[CrossRef]

Michel, B.

Moharam, M. G.

Muller, R.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. V. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004)
[CrossRef] [PubMed]

Nenninger, G. G.

G. G. Nenninger, P. Tobiška, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sensors Actuators 74, 145–151 (2001).
[CrossRef]

Neviere, M.

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16,100–16,108 (2000).
[CrossRef]

Okazaki, S.

S. Okazaki, “Resolution limits of optical lithography,” J. Vac. Sci. Technol. B 9, 2829–2833 (1991).
[CrossRef]

Park, J. W.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. V. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Park, Q. H.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. V. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Pease, R. F. W.

M. A. McCord and R. F. W. Pease, “Lithography with the scanning tunneling microscope,” J. Vac. Sci. Technol. B 4, 86–88 (1986).
[CrossRef]

Pellerin, K. M.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

Pendry, J. B.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Phillips, W. D.

K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Heig, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, “Microlithography using neutral metastable atoms and self-assembled monolayers,” Science 269, 1255–1257 (1995).
[CrossRef] [PubMed]

Piller, N. B.

Popov, E.

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16,100–16,108 (2000).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Preist, T. W.

Prentiss, M.

K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, and M. Prentiss, “Formation and detection of atomic wavepackets localized to the Heisenberg uncertainty limit: a new nanolithographic technique,” Science 280, 1583–1586 (1998).
[CrossRef] [PubMed]

K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Heig, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, “Microlithography using neutral metastable atoms and self-assembled monolayers,” Science 269, 1255–1257 (1995).
[CrossRef] [PubMed]

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69, 1636–1639 (1992).
[CrossRef] [PubMed]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Heidelberg, 1988), Chap. 2, pp. 4–39.

Reinisch, R.

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16,100–16,108 (2000).
[CrossRef]

Renstrom, P. J.

S. Y Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1998).
[CrossRef]

Rolston, S. L.

K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Heig, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, “Microlithography using neutral metastable atoms and self-assembled monolayers,” Science 269, 1255–1257 (1995).
[CrossRef] [PubMed]

Rothschild, M.

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, and C. Van Peski, “157 nm: deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

Ryu, H. V.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. V. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Salomon, L.

L. Salomon, F. Grillot, A. Zayats, and F. De Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[CrossRef] [PubMed]

Sambles, J. R.

Sambles, J. R. G.

F. Yang, J. R. G. Sambles, and W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B. 44, 5855–5872 (1991).
[CrossRef]

Schmid, H.

Schroter, U.

U. Schroter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15,419–15,421(1998).
[CrossRef]

Sedlacek, J. H. C.

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, and C. Van Peski, “157 nm: deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

Silverman, J. P.

J. P. Silverman, “Challenges and progress in x-ray lithography,” J. Vac. Sci. Technol. B 16, 3137–3141 (1998).
[CrossRef]

Stulen, R.

C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, “Extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 16, 3142–3149 (1998).
[CrossRef]

Sweeney, D.

C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, “Extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 16, 3142–3149 (1998).
[CrossRef]

Tan, H.

H. Tan, A. Gilbertson, and S. Y. Chou, “Roller nanoimprint lithography,” J. Vac. Sci. Technol. B 16, 3926–3928 (1998).
[CrossRef]

Tennant, D. M.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69, 1636–1639 (1992).
[CrossRef] [PubMed]

Thio, T.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys Rev. B 58, 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Thywissen, J. H.

K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, and M. Prentiss, “Formation and detection of atomic wavepackets localized to the Heisenberg uncertainty limit: a new nanolithographic technique,” Science 280, 1583–1586 (1998).
[CrossRef] [PubMed]

Timp, G.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69, 1636–1639 (1992).
[CrossRef] [PubMed]

Tobiška, P.

G. G. Nenninger, P. Tobiška, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sensors Actuators 74, 145–151 (2001).
[CrossRef]

Trautman, J. K.

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef] [PubMed]

Uttaro, R. S.

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, and C. Van Peski, “157 nm: deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

Van Peski, C.

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, and C. Van Peski, “157 nm: deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

Whitesides, G. M.

K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Heig, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, “Microlithography using neutral metastable atoms and self-assembled monolayers,” Science 269, 1255–1257 (1995).
[CrossRef] [PubMed]

Wilbur, J. L.

K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Heig, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, “Microlithography using neutral metastable atoms and self-assembled monolayers,” Science 269, 1255–1257 (1995).
[CrossRef] [PubMed]

Williams, C. P.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Yang, F.

F. Yang, J. R. G. Sambles, and W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B. 44, 5855–5872 (1991).
[CrossRef]

Yee, S. S.

G. G. Nenninger, P. Tobiška, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sensors Actuators 74, 145–151 (2001).
[CrossRef]

Yoo, K. H.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. V. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Yoon, Y. C.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. V. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Younkin, R.

K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, and M. Prentiss, “Formation and detection of atomic wavepackets localized to the Heisenberg uncertainty limit: a new nanolithographic technique,” Science 280, 1583–1586 (1998).
[CrossRef] [PubMed]

Zayats, A.

L. Salomon, F. Grillot, A. Zayats, and F. De Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

H. Schmid, H. Biebuyck, B. Michel, and O. J. F. Martin, “Light-coupling masks for lensless, subwavelength optical lithography,” Appl. Phys. Lett. 72, 2379–2381 (1998).
[CrossRef]

J. G. Goodberlet, “Patterning 100 nm features using deep-ultraviolet contact photolithography,” Appl. Phys. Lett. 76, 667–669 (2000).
[CrossRef]

J. G. Goodberlet and H. Kavak, “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81, 1315–1317 (2002).
[CrossRef]

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999).
[CrossRef]

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. V. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Int. J. Nanosci. (1)

X. Luo and T. Ishihara, “Resonant light transmission in metallic photonic crystal slabs,” Int. J. Nanosci. 1, 657–661 (2002).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Vac. Sci. Technol. B (8)

M. A. McCord and R. F. W. Pease, “Lithography with the scanning tunneling microscope,” J. Vac. Sci. Technol. B 4, 86–88 (1986).
[CrossRef]

S. Y Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1998).
[CrossRef]

H. Tan, A. Gilbertson, and S. Y. Chou, “Roller nanoimprint lithography,” J. Vac. Sci. Technol. B 16, 3926–3928 (1998).
[CrossRef]

S. Okazaki, “Resolution limits of optical lithography,” J. Vac. Sci. Technol. B 9, 2829–2833 (1991).
[CrossRef]

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, and C. Van Peski, “157 nm: deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, “Extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 16, 3142–3149 (1998).
[CrossRef]

J. P. Silverman, “Challenges and progress in x-ray lithography,” J. Vac. Sci. Technol. B 16, 3137–3141 (1998).
[CrossRef]

M. A. McCord, “Electron beam lithography for 0.13 µm manufacturing,” J. Vac. Sci. Technol. B 15, 2125–2129 (1997).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. D. Levenson, “Extending the lifetime of optical lithography technologies with wavefront engineering,” Jpn. J. Appl. Phys. 33, 6765–6773 (1994).
[CrossRef]

Nature (London) (1)

T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

J. Melngailis, “Focused ion beam lithography,” Nucl. Instrum. Methods Phys. Res. B 80, 1271–1280 (1993).
[CrossRef]

Opt. Express (1)

Phys Rev. B (1)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys Rev. B 58, 6779–6782 (1998).
[CrossRef]

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 6, 163–182 (1944).
[CrossRef]

Phys. Rev. B (3)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16,100–16,108 (2000).
[CrossRef]

U. Schroter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15,419–15,421(1998).
[CrossRef]

Phys. Rev. B. (1)

F. Yang, J. R. G. Sambles, and W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B. 44, 5855–5872 (1991).
[CrossRef]

Phys. Rev. Lett. (7)

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[CrossRef] [PubMed]

L. Salomon, F. Grillot, A. Zayats, and F. De Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004)
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69, 1636–1639 (1992).
[CrossRef] [PubMed]

Science (3)

K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Heig, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, “Microlithography using neutral metastable atoms and self-assembled monolayers,” Science 269, 1255–1257 (1995).
[CrossRef] [PubMed]

K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, and M. Prentiss, “Formation and detection of atomic wavepackets localized to the Heisenberg uncertainty limit: a new nanolithographic technique,” Science 280, 1583–1586 (1998).
[CrossRef] [PubMed]

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef] [PubMed]

Sensors Actuators (1)

G. G. Nenninger, P. Tobiška, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sensors Actuators 74, 145–151 (2001).
[CrossRef]

Other (3)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Heidelberg, 1988), Chap. 2, pp. 4–39.

P. G. Kik, A. L. Martin, S. A. Maier, and H. A. Atwater, “Metal nanoparticle arrays for near field optical lithography,” in Properties of Metal Nanostructures, N. J. Halas, ed., Proc. SPIE4810, 7–13 (2002).

M. V. Klein, Optics (Wiley, New York, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

a, Schematic representation of SPPL. b, Schematic representation of resolution enhancement by SPPL.

Fig. 2.
Fig. 2.

Dispersion of SSPs on several masks.

Fig. 3.
Fig. 3.

Resolution of surface-plasmon polaritonic interference.

Fig. 4.
Fig. 4.

Electric field distributions for four masks.

Fig. 5.
Fig. 5.

Electric field distribution of SPPs for a symmetric unperforated plasmon mask.

Fig. 6.
Fig. 6.

Electric field distribution of SPPs in an asymmetric unperforated plasmon mask.

Fig. 7.
Fig. 7.

Resolution of SPPL for a thin metallic film.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

k sp = ω ( ε d ε m ( ε d + ε m ) ) 1 2 c ,
tanh ( α 2 d ) = ε 2 α 2 ( ε 1 α 3 + ε 3 α 1 ) ( ε 1 ε 3 α 2 2 + ε 2 2 α 1 α 3 )
α 2 j = k 2 k 2 0 ε j , j = 1 , 2 , 3 ,
k = k r i k i
k sp = k x ± m x G x ± m y ± G y ,
λ = 2 π ( ε d ε m ( ε d + ε m ) ) 1 2 m x G x

Metrics