Abstract

All-optical signal regeneration with wavelength multicasting has been demonstrated using cross-absorption modulation in a single electroabsorption modulator for the first time. We show that the input signal wavelength can be simultaneously converted to 6 different wavelengths at 10 Gb/s with signal regeneration. The output extinction ratio, the linewidth, and the pulse shape show a significant improvement. A negative power penalty of 2 dB is obtained at 10-9 bit-error-rate level.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. H. Wood, J. Z. Pastalan, C. A. Burrus, JR., B. C. Johnson, B. I. Miller, J. L. Demiguel, U. Koren, M. G. Young, ???Electric field screening by photogenerated holes in multiple quantum wells: A new mechanism for absorption saturation,??? Appl. Phys. Lett. 57, 1081-1083 (1990).
    [CrossRef]
  2. N. Edagawa, M. Suzuki, S. Yamanoto, ???Novel wavelength converter using an electroabsorption modulator,??? IEICE Trans. Electron. E81-C, 1251-2157 (1998).
  3. S. Hojfeldt, S. Bischoff, and J. Mork, ???All-optical wavelength conversion and signal regeneration using an electroabsorption modulator,??? IEEE J. Lightwave Technol. 18, 1121-1127 (2000).
    [CrossRef]
  4. T. Otani, T. Miyazaki, S. Yamamoto, ???40-Gb/s optical 3R regenerator using electroabsorption modulators for optical networks,??? IEEE J. Lightwave Technol. 20, 195-200 (2002).
    [CrossRef]
  5. A. D. Ellis, J. K. Lucek, D. Pitcher, D. G. Moodie, D. Cotter, ???Full 10??10 Gbit/s OTDM data generation and demultiplexing using electroabsorption modulators,??? Electron. Lett. 34, 1766-1767 (1998).
    [CrossRef]
  6. E. S. Awad, P. S. Cho, C. Richardson, N. Moulton, J. Goldhar, ???Optical 3R regeneration using a single EAM for all-optical timing extraction with simultaneous reshaping and wavelength conversion,??? IEEE Photon. Technol. Lett. 14, 1378-1380 (2002).
    [CrossRef]
  7. K. K. Chow and C. Shu, ???All-optical wavelength conversion with multicasting at 6 10 Gbit/s using electroabsorption modulator,??? Electron. Lett. 39, 1395-1397 (2003).
    [CrossRef]
  8. L. Xu, N. Chi, K. Yvind, L. J. Christiansen, L. K. Oxenløwe, J. Mørk, P. Jeppesen, and J. Hanberg, ???7??40 Gb/s base-rate RZ all-optical broadcasting utilizing an electroabsorption modulator,??? Opt. Express 12, 416-420(2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-416">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-416</a>
    [CrossRef]
  9. S. Gao, X. Jia, X. Hu, and D. Li, ???Wavelength requirements and routing for multicasting connections in lightpath and light-tree models of WDM networks with limited drops,??? IEE Proc. Commun. 148, 363-367 (2001).
    [CrossRef]
  10. R. K. Pankaj, ???Wavelength requirements for multicasting in all-optical networks,??? IEEE/ACM Trans. Networking 7, 414-424 (1999).
    [CrossRef]
  11. R. Libeskind-Hadas and R. Melhem, ???Multicast routing and wavelength assignment in multihop optical networks,??? IEEE/ACM Trans. Networking 10, 621-629 (2002).
    [CrossRef]

Appl. Phys. Lett.

T. H. Wood, J. Z. Pastalan, C. A. Burrus, JR., B. C. Johnson, B. I. Miller, J. L. Demiguel, U. Koren, M. G. Young, ???Electric field screening by photogenerated holes in multiple quantum wells: A new mechanism for absorption saturation,??? Appl. Phys. Lett. 57, 1081-1083 (1990).
[CrossRef]

Electron. Lett.

A. D. Ellis, J. K. Lucek, D. Pitcher, D. G. Moodie, D. Cotter, ???Full 10??10 Gbit/s OTDM data generation and demultiplexing using electroabsorption modulators,??? Electron. Lett. 34, 1766-1767 (1998).
[CrossRef]

K. K. Chow and C. Shu, ???All-optical wavelength conversion with multicasting at 6 10 Gbit/s using electroabsorption modulator,??? Electron. Lett. 39, 1395-1397 (2003).
[CrossRef]

IEE Proc. Commun.

S. Gao, X. Jia, X. Hu, and D. Li, ???Wavelength requirements and routing for multicasting connections in lightpath and light-tree models of WDM networks with limited drops,??? IEE Proc. Commun. 148, 363-367 (2001).
[CrossRef]

IEEE J. Lightwave Technol.

S. Hojfeldt, S. Bischoff, and J. Mork, ???All-optical wavelength conversion and signal regeneration using an electroabsorption modulator,??? IEEE J. Lightwave Technol. 18, 1121-1127 (2000).
[CrossRef]

T. Otani, T. Miyazaki, S. Yamamoto, ???40-Gb/s optical 3R regenerator using electroabsorption modulators for optical networks,??? IEEE J. Lightwave Technol. 20, 195-200 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

E. S. Awad, P. S. Cho, C. Richardson, N. Moulton, J. Goldhar, ???Optical 3R regeneration using a single EAM for all-optical timing extraction with simultaneous reshaping and wavelength conversion,??? IEEE Photon. Technol. Lett. 14, 1378-1380 (2002).
[CrossRef]

IEEE/ACM Trans. Networking

R. K. Pankaj, ???Wavelength requirements for multicasting in all-optical networks,??? IEEE/ACM Trans. Networking 7, 414-424 (1999).
[CrossRef]

R. Libeskind-Hadas and R. Melhem, ???Multicast routing and wavelength assignment in multihop optical networks,??? IEEE/ACM Trans. Networking 10, 621-629 (2002).
[CrossRef]

IEICE Trans. Electron.

N. Edagawa, M. Suzuki, S. Yamanoto, ???Novel wavelength converter using an electroabsorption modulator,??? IEICE Trans. Electron. E81-C, 1251-2157 (1998).

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup on signal regeneration with wavelength multicasting using cross-absorption modulation in an electroabsoption modulator. EA MOD: electroabsorption modulator; PS: polarization scrambler; EDFA: erbium-doped fiber amplifier; MUX: multiplexer; DEMUX: demultiplexer; BER test set: bit-error-rate test set.

Fig. 2.
Fig. 2.

Optical spectrum showing all the 6 output channels.

Fig. 3.
Fig. 3.

Optical spectra showing (a) the input signal and (b) the channel 1 output.

Fig. 4.
Fig. 4.

Plot of the bit-error-rate against the received power in a 10 Gb/s BER measurement. The inset shows the eye diagrams of the input signal (upper) and the channel 1 output (lower).

Fig. 5.
Fig. 5.

Poincare spheres of (a) the input signal with random polarization and (b) the output signal with a stabilized state of polarization.

Metrics