Abstract

We perform a comparison of optical tweezing using continuous wave (cw) and femtosecond lasers. Measurement of the relative Q-values in the femtosecond and cw regimes shows that femtosecond optical tweezers are just as effective as cw optical tweezers. We also demonstrate simultaneous optical tweezing and in-situ control of two-photon fluorescence (at 400nm) from dye-doped polymer microspheres. By switching the 800 nm tweezing laser source between femtosecond and cw regimes, we turned the fluorescent signal from the tweezed particle on and off while maintaining an equivalent tweezing action. Femtosecond lasers can thus be used for optical tweezing and simultaneously utilized to induce nonlinear multi-photon processes such as two-photon excitation or even photoporation.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Ashkin, J.-M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  2. A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992).
    [CrossRef] [PubMed]
  3. A. Ashkin, J.-M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature 330, 769-771 (1987).
    [CrossRef] [PubMed]
  4. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, "Direct observation of kinesin stepping by optical trapping interferometry," Nature 365, 721-727 (1993)
    [CrossRef] [PubMed]
  5. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant and K. Dholakia, "Controlled rotation of optically trapped microscopic particles," Science 292, 912-914 (2001).
    [CrossRef] [PubMed]
  6. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296, 1101-1103 (2002).
    [CrossRef] [PubMed]
  7. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, "Optical particle trapping with computer-generated holograms written on a liquid-crystal display," Opt. Lett. 24, 608-610 (1999).
    [CrossRef]
  8. P. C. Mogensen and J. Gluckstad, "Dynamic away generation and pattern formation for optical tweezers," Opt. Commun. 175, 75-81 (2000).
    [CrossRef]
  9. J. E. Curtis, B. A. Koss, D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
    [CrossRef]
  10. S. Sato and H. Inaba, "2nd-harmonic and sum-frequency generation from optically trapped KTiOPO4 microscopic particles by use of Nd:YAG and Ti:Al2O3 lasers," Opt. Lett. 19, 927-929 (1994).
    [CrossRef] [PubMed]
  11. L. Malmqvist and H. M. Hertz, "Second-harmonic generation in optically trapped nonlinear particles with pulsed lasers," Appl. Opt. 34, 3392-3397 (1995).
    [CrossRef] [PubMed]
  12. M. E. J. Friese, A. G. Truscott, H. Rubinsztein-Dunlop and N. R. Heckenberg, "Three-dimensional imaging with optical tweezers," Appl. Opt. 38, 6597-6603 (1999).
    [CrossRef]
  13. E.-L. Florin, A. Pralle, J. K. H. Horber, and H. K. Stelzer, "Photonic force microscope based on optical tweezers and two-photon excitation for biological applications," J. Structural Biology 119, 202-211 (1997).
    [CrossRef]
  14. T. K. Lake, A. E. Carruthers, M. Taylor, L. Paterson, F. Gunn-Moore, J. W. Allen, W. Sibbett, and K. Dholakia, "Optical trapping and fluorescence excitation with violet diode lasers and extended cavity surface emitting lasers," Opt. Express 12, 670-678 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-670">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-670</a>
    [CrossRef] [PubMed]
  15. B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, "Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers," Opt. Commun. 205, 207-213 (2002).
    [CrossRef]
  16. Q. Xing, F. Mao, L. Chai, and Q. Wang, "Numerical modeling and theoretical analysis of femtosecond laser tweezers," Optics and Laser Technology (to be published).
  17. H. Felgner, O. Muller, and M. Schliwa, "Calibration of light forces in optical tweezers," Appl. Opt. 34, 977-982 (1995).
    [CrossRef] [PubMed]
  18. Y. Liu, G.J. Sonek, M.W. Berns, K. Konig, and B.J. Tromberg, "Two-photon fluorescence excitation in continuous-wave infrared optical tweezers," Opt. Lett. 20, 2246-2248 (1995).
    [CrossRef] [PubMed]
  19. M. Tirri, J. Vaarno, J.T. Soini, and P.E. Hanninen, "Low cost lasers challenge ultrafast systems in two-photon excitation applications," Opto-Electronics Review 11, 39-44 (2003).
  20. H. Little, C. T. A. Brown, V. Garces-Chavez, W. Sibbett, and K. Dholakia, "Optical guiding of microscopic particles in femtosecond and continuous wave Bessel light beams," Opt. Express 12, 2560-2565 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2560">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2560</a>
    [CrossRef] [PubMed]
  21. U. K. Tirlapur and K. Konig, "Cell biology - targeted transfection by femtosecond laser," Nature, 418, 290-291 (2002).
    [CrossRef] [PubMed]

Appl. Opt. (3)

Biophys. J. (1)

A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

J. Structural Biology (1)

E.-L. Florin, A. Pralle, J. K. H. Horber, and H. K. Stelzer, "Photonic force microscope based on optical tweezers and two-photon excitation for biological applications," J. Structural Biology 119, 202-211 (1997).
[CrossRef]

Nature (3)

A. Ashkin, J.-M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, "Direct observation of kinesin stepping by optical trapping interferometry," Nature 365, 721-727 (1993)
[CrossRef] [PubMed]

U. K. Tirlapur and K. Konig, "Cell biology - targeted transfection by femtosecond laser," Nature, 418, 290-291 (2002).
[CrossRef] [PubMed]

Opt. Commun. (3)

P. C. Mogensen and J. Gluckstad, "Dynamic away generation and pattern formation for optical tweezers," Opt. Commun. 175, 75-81 (2000).
[CrossRef]

J. E. Curtis, B. A. Koss, D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, "Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers," Opt. Commun. 205, 207-213 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Opto-Electronics Review (1)

M. Tirri, J. Vaarno, J.T. Soini, and P.E. Hanninen, "Low cost lasers challenge ultrafast systems in two-photon excitation applications," Opto-Electronics Review 11, 39-44 (2003).

Science (2)

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant and K. Dholakia, "Controlled rotation of optically trapped microscopic particles," Science 292, 912-914 (2001).
[CrossRef] [PubMed]

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296, 1101-1103 (2002).
[CrossRef] [PubMed]

Other (1)

Q. Xing, F. Mao, L. Chai, and Q. Wang, "Numerical modeling and theoretical analysis of femtosecond laser tweezers," Optics and Laser Technology (to be published).

Supplementary Material (2)

» Media 1: MPG (2543 KB)     
» Media 2: MPG (3492 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental set-up for the femtosecond and cw optical tweezers

Fig. 2.
Fig. 2.

(a) Horizontal and (b) vertical profile of the output beam from the titanium-sapphire laser in both cw (non-modelocked) and femtosecond (modelocked) operations.

Fig. 3.
Fig. 3.

Excitation and emission characteristics of the blue fluorescent polymer microspheres [www.dukescientific.com]

Fig. 4.
Fig. 4.

Logarithm of average tweezing power versus logarithm of fluorescence intensity from tweezed polymer microspheres. The straight line y=2x describes the quadratic nature of the two-photon absorption process.

Fig. 5.
Fig. 5.

(2.6MB) Movie (monochrome) of simultaneous two-photon excitation fluorescence and femtosecond optical tweezing of dye-doped 1.28 µm polymer microspheres. While tweezing of the same microsphere is maintained, the fluorescent signal is turned off by simply switching the titanium-sapphire source laser from the femtosecond regime to the cw regime. This procedure is entirely reversible (3.5MB version).

Tables (1)

Tables Icon

Table 1. Comparison of Q-values between cw and femtosecond optical tweezers for 1.28 µm spheres

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Q = 3 π η d v k c n P twz

Metrics