Abstract

We present third harmonic generation from an InGaAs/AlInAs Quantum Cascade laser based on a three-well diagonal transition active region with an integrated third-order nonlinear oscillator. The device displays pump radiation at λ~11.1 µm and third order nonlinear light generation at λ~3.7 µm as well as second harmonic generation at λ~5.4 µm.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. Sirtori, F. Capasso, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, ???Observation of large second order susceptibility via intersubband transitions at ? ~ 10 ?m in asymmetric coupled AlInAs/GaInAs quantum wells,??? Appl. Phys. Lett. 59, 2302-2304 (1991).
    [CrossRef]
  2. C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, ???Giant, triply resonant, third-order nonlinear susceptibility ??3??(3) in coupled quantum wells,??? Phys. Rev. Lett. 68, 1010-1013 (1992).
    [CrossRef] [PubMed]
  3. M. M. Fejer, S. J. B. Yoo, R. L. Byer, A. Harwit, and J. S. Harris, ???Observation of extremely large quadratic susceptibility at 9.6???10.8 µm in electric-field-biased AlGaAs quantum wells,??? Phys. Rev Lett. 62, 1041- 1044 (1989).
    [CrossRef] [PubMed]
  4. E. Rosencher; A. Fiore; B. Vinter; V. Berger, Ph. Bois, J. Nagle, ???Quantum Engineering of Optical Nonlinearities,??? Science 271, 168-173 (1996).
    [CrossRef]
  5. M. K. Gurnick and T. A. De Temple, ???Synthetic nonlinear semiconductors,??? IEEE J. Quantum Electron. 18, 791-796 (1983).
    [CrossRef]
  6. C. Gmachl, A. Belyanin, D. L. Sivco, M. L. Peabody, N. Owschimikow, A. M. Sergent, F. Capasso, and A. Y. Cho, ???Optimized Second-Harmonic Generation in Quantum Cascade Lasers,??? IEEE J. Quantum Electron. 39(11), 1345-1355 (2003).
    [CrossRef]
  7. Nina Owschimikow, Claire Gmachl, Alexey Belyanin, Vitaly Kocharovsky, Deborah L. Sivco, Raffaele Colombelli, Federico Capasso, and Alfred Y. Cho, ???Resonant second-order nonlinear process in quantum cascade lasers,??? Phys. Rev. Lett. 90, 043902 (2003).
    [CrossRef] [PubMed]
  8. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, ???Quantum cascade laser with plasmon enhanced waveguide operating at 8.4 µm wavelength,??? Appl. Phys. Lett. 66, 3242-3244 (1995).
    [CrossRef]
  9. Oana Malis, Alexey Belyanin, Claire Gmachl, Deborah L. Sivco, Milton L. Peabody, A. Michael Sergent, and Alfred Y. Cho, ???Improvement of second-harmonic generation in quantum-cascade lasers with true phase-matching,??? Appl. Phys. Lett. 84, 2721-2723 (2004).
    [CrossRef]
  10. However, the work reported in [9] was still underway, when the experimental part of the here presented work was concluded.

Appl. Phys. Lett. (3)

C. Sirtori, F. Capasso, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, ???Observation of large second order susceptibility via intersubband transitions at ? ~ 10 ?m in asymmetric coupled AlInAs/GaInAs quantum wells,??? Appl. Phys. Lett. 59, 2302-2304 (1991).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, ???Quantum cascade laser with plasmon enhanced waveguide operating at 8.4 µm wavelength,??? Appl. Phys. Lett. 66, 3242-3244 (1995).
[CrossRef]

Oana Malis, Alexey Belyanin, Claire Gmachl, Deborah L. Sivco, Milton L. Peabody, A. Michael Sergent, and Alfred Y. Cho, ???Improvement of second-harmonic generation in quantum-cascade lasers with true phase-matching,??? Appl. Phys. Lett. 84, 2721-2723 (2004).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. K. Gurnick and T. A. De Temple, ???Synthetic nonlinear semiconductors,??? IEEE J. Quantum Electron. 18, 791-796 (1983).
[CrossRef]

C. Gmachl, A. Belyanin, D. L. Sivco, M. L. Peabody, N. Owschimikow, A. M. Sergent, F. Capasso, and A. Y. Cho, ???Optimized Second-Harmonic Generation in Quantum Cascade Lasers,??? IEEE J. Quantum Electron. 39(11), 1345-1355 (2003).
[CrossRef]

Phys. Rev Lett. (1)

M. M. Fejer, S. J. B. Yoo, R. L. Byer, A. Harwit, and J. S. Harris, ???Observation of extremely large quadratic susceptibility at 9.6???10.8 µm in electric-field-biased AlGaAs quantum wells,??? Phys. Rev Lett. 62, 1041- 1044 (1989).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, ???Giant, triply resonant, third-order nonlinear susceptibility ??3??(3) in coupled quantum wells,??? Phys. Rev. Lett. 68, 1010-1013 (1992).
[CrossRef] [PubMed]

Nina Owschimikow, Claire Gmachl, Alexey Belyanin, Vitaly Kocharovsky, Deborah L. Sivco, Raffaele Colombelli, Federico Capasso, and Alfred Y. Cho, ???Resonant second-order nonlinear process in quantum cascade lasers,??? Phys. Rev. Lett. 90, 043902 (2003).
[CrossRef] [PubMed]

Science (1)

E. Rosencher; A. Fiore; B. Vinter; V. Berger, Ph. Bois, J. Nagle, ???Quantum Engineering of Optical Nonlinearities,??? Science 271, 168-173 (1996).
[CrossRef]

Other (1)

However, the work reported in [9] was still underway, when the experimental part of the here presented work was concluded.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Conduction band energy diagram for one active region between two injector regions. The significant energy levels inside the active region are labeled 1 to 5. The thicknesses in nanometers of the InGaAs QW’s and AlInAs barriers of one period of injector and active region are from right to left: 3.7/2.1/3.0/2.1/3.5/2.1/3.4/3.6/3.1/1.2/6.4/1.3/4.7/2.6, the barriers are indicated in bold font and the underlined layers are doped to nSi=2.5×1016 cm-3. The yellow bars indicate the levels involved in THG; the red bars and arrow indicates the laser transition.

Fig. 2.
Fig. 2.

Emission spectra of a QC laser with integrated third-order nonlinear oscillator in the active region. Part (A) shows the spectrum of the fundamental light emission at a wavelength of 11.1 µm. The spectrum was taken with a MCT detector. Part (B) shows the SHG and THG light emission from the same device. The SHG and THG are at wavelengths of 5.4 µm and 3.7 µm, respectively. The spectra were taken with an InSb detector.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P ( 3 ω ) = e N e z 25 σ 52
i e 4 z 23 z 34 z 45 z 25 N e E z 3 ( ω ) 3 Γ 52 ( 1 Γ 42 ( n 3 n 4 Γ 43 + n 3 n 2 Γ 32 ) 1 Γ 53 ( n 4 n 5 Γ 54 n 3 n 4 Γ 43 ) )
χ ( 3 ) χ ( 2 ) e z 52 γ 52 10 3 .
W 3 2 10 π 6 Σ W 1 3 [ 1 + e 2 α 3 L 2 e α 3 L cos ( Δ k L ) ] · ( 1 R 3 ) μ 1 3 μ 3 c 2 λ 3 2 ( Δ k 2 + α 3 2 ) ( 1 R 1 ) 3 ,
Σ =
μ 1 6 μ 3 2 ( χ ( 3 ) ( x , z ) 1 ε ω 3 H ω 3 H 3 ω dxdz 2 1 ε 3 ω H 3 ω 2 dxdz ) ( ( H 3 ω 2 dxdz ) 2 ( 1 ε ω H ω 2 dxdz ) 3 )

Metrics