Abstract

Mie based theoretical analysis has been performed for investigation of the possibility of application of the plasma hemoglobin releasing due to local hemolysis for optical clearing of blood. The 30–40% reduction of the scattering coefficient of blood in the spectral range from 400 to 1000 nm with increase of degree of hemolysis (up to 20%) was shown. At the same time, the reduction of absorption coefficient of blood is localized mainly within the Soret band with maximum at 415 nm (~15%), the α-band at 540 nm and the β-band at 577 nm (~10%) of oxyhemoglobin. In the spectral range from 700 to 1000 nm the decrease of absorption coefficient is less than 8%.

© 2004 Optical Society of America

Full Article  |  PDF Article
Related Articles
Comparison of Mie theory and the light scattering of red blood cells

John M. Steinke and A. P. Shepherd
Appl. Opt. 27(19) 4027-4033 (1988)

Light-scattering technique for the study of orientation and deformation of red blood cells in a concentrated suspension

A. H. Gandjbakhche, P. Mills, and P. Snabre
Appl. Opt. 33(6) 1070-1078 (1994)

Single scattering by red blood cells

Martin Hammer, Dietrich Schweitzer, Bernhard Michel, Eike Thamm, and Achim Kolb
Appl. Opt. 37(31) 7410-7418 (1998)

References

  • View by:
  • |
  • |
  • |

  1. M. Brezinski, K. Saunders, C. Jesser, X. Li, and J. Fujimoto, “Index matching to improve optical coherence tomography imaging through blood,” Circulation 10, 1999–2003 (2001).
    [Crossref]
  2. V.V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE Press, TT38, Bellingham, Washington, 2000)
  3. V.V. Tuchin (ed.), Handbook of Optical Biomedical Diagnostics (PM107, SPIE Press, Bellingham, WA, 2002).
  4. Tuan Vo-Dinh (ed.), Biomedical Photonics Handbook (CRC Press, Boca Raton, 2003).
    [Crossref]
  5. B.E. Bouma and G.J. Tearney (eds.), Handbook of Optical Coherence Tomography (Marcel-Dekker, New York, 2002).
  6. V.V. Tuchin, X. Xu, and R. K. Wang, “Dynamic optical coherence tomography in studies of optical clearing, sedimentation, and aggregation of immersed blood,” Appl. Opt. 47, 258–271 (2002).
    [Crossref]
  7. X. Xu, R.K. Wang, J.B. Elder, and V.V. Tuchin, “Effect of dextran-induced changes in refractive index and aggregation on optical properties of whole blood,” Phys. Med. Biol. 48, 1205–1221 (2003).
    [Crossref] [PubMed]
  8. A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm,” J. Biomed. Opt. 4, 36–43 (1999).
    [Crossref] [PubMed]
  9. D.M. Zhestkov, A.N. Bashkatov, E.A. Genina, and V.V. Tuchin, “Influence of clearing solutions osmolarity on the optical properties of RBC,” Proc. SPIE5474, (2004 to be published).
    [Crossref]
  10. A.G. Borovoi, E.I. Naats, and U.G. Oppel, “Scattering of Light by a Red Blood Cell,” J. Biomed. Opt. 3, 364–372 (1998).
    [Crossref] [PubMed]
  11. D.H. Tycko, M.G. Metz, E.A. Epstein, and A. Grinbaum, “Flow cytometric light-scattering measurement of red cell volume and hemoglobin concentration,” Appl. Opt. 24, 1355–1365 (1985).
    [Crossref] [PubMed]
  12. N.G. Khlebtsov and S.Yu. Shchyogolev, “Account of particle nonsphericity at determination of parameters of dispersion systems by a turbidity spectrum method. 1. Characteristic functions of light scattering by nonspherical particle systems in Rayleigh-Gans approximation,” Opt. Spectrosc. 42, 956–962 (1977)
  13. A.Ya. Khairullina and S.F. Shumilina, “Determination of the distribution function of erythrocytes according to size by the spectral transparency method,” J. Appl. Spectrosc. 19, 1078–1083 (1973).
    [Crossref]
  14. J.M. Steinke and A.P. Shepherd, “Diffusion model of the optical absorbance of whole blood,” J. Opt. Soc. Am. A. 5, 813–822 (1988).
    [Crossref] [PubMed]
  15. J.M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37, 2788–2797 (1998).
    [Crossref]
  16. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1983).
  17. S. Cheng, H.Y. Shen, G. Zhang, C.H. Huang, and X.J. Huang, “Measurement of the refractive index of biotissue at four laser wavelengths,” in Optics in Health Care and Biomedical Optics: Diagnostics and Treatment, B. Chance, M. Chen, and G. Yoon, eds., Proc. SPIE4916, 172–176 (2002).

2003 (1)

X. Xu, R.K. Wang, J.B. Elder, and V.V. Tuchin, “Effect of dextran-induced changes in refractive index and aggregation on optical properties of whole blood,” Phys. Med. Biol. 48, 1205–1221 (2003).
[Crossref] [PubMed]

2002 (1)

V.V. Tuchin, X. Xu, and R. K. Wang, “Dynamic optical coherence tomography in studies of optical clearing, sedimentation, and aggregation of immersed blood,” Appl. Opt. 47, 258–271 (2002).
[Crossref]

2001 (1)

M. Brezinski, K. Saunders, C. Jesser, X. Li, and J. Fujimoto, “Index matching to improve optical coherence tomography imaging through blood,” Circulation 10, 1999–2003 (2001).
[Crossref]

1999 (1)

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm,” J. Biomed. Opt. 4, 36–43 (1999).
[Crossref] [PubMed]

1998 (2)

A.G. Borovoi, E.I. Naats, and U.G. Oppel, “Scattering of Light by a Red Blood Cell,” J. Biomed. Opt. 3, 364–372 (1998).
[Crossref] [PubMed]

J.M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37, 2788–2797 (1998).
[Crossref]

1988 (1)

J.M. Steinke and A.P. Shepherd, “Diffusion model of the optical absorbance of whole blood,” J. Opt. Soc. Am. A. 5, 813–822 (1988).
[Crossref] [PubMed]

1985 (1)

1977 (1)

N.G. Khlebtsov and S.Yu. Shchyogolev, “Account of particle nonsphericity at determination of parameters of dispersion systems by a turbidity spectrum method. 1. Characteristic functions of light scattering by nonspherical particle systems in Rayleigh-Gans approximation,” Opt. Spectrosc. 42, 956–962 (1977)

1973 (1)

A.Ya. Khairullina and S.F. Shumilina, “Determination of the distribution function of erythrocytes according to size by the spectral transparency method,” J. Appl. Spectrosc. 19, 1078–1083 (1973).
[Crossref]

Bashkatov, A.N.

D.M. Zhestkov, A.N. Bashkatov, E.A. Genina, and V.V. Tuchin, “Influence of clearing solutions osmolarity on the optical properties of RBC,” Proc. SPIE5474, (2004 to be published).
[Crossref]

Bohren, C.

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1983).

Borovoi, A.G.

A.G. Borovoi, E.I. Naats, and U.G. Oppel, “Scattering of Light by a Red Blood Cell,” J. Biomed. Opt. 3, 364–372 (1998).
[Crossref] [PubMed]

Brezinski, M.

M. Brezinski, K. Saunders, C. Jesser, X. Li, and J. Fujimoto, “Index matching to improve optical coherence tomography imaging through blood,” Circulation 10, 1999–2003 (2001).
[Crossref]

Cheng, S.

S. Cheng, H.Y. Shen, G. Zhang, C.H. Huang, and X.J. Huang, “Measurement of the refractive index of biotissue at four laser wavelengths,” in Optics in Health Care and Biomedical Optics: Diagnostics and Treatment, B. Chance, M. Chen, and G. Yoon, eds., Proc. SPIE4916, 172–176 (2002).

Dorschel, K.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm,” J. Biomed. Opt. 4, 36–43 (1999).
[Crossref] [PubMed]

Elder, J.B.

X. Xu, R.K. Wang, J.B. Elder, and V.V. Tuchin, “Effect of dextran-induced changes in refractive index and aggregation on optical properties of whole blood,” Phys. Med. Biol. 48, 1205–1221 (2003).
[Crossref] [PubMed]

Epstein, E.A.

Friebel, M.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm,” J. Biomed. Opt. 4, 36–43 (1999).
[Crossref] [PubMed]

Fujimoto, J.

M. Brezinski, K. Saunders, C. Jesser, X. Li, and J. Fujimoto, “Index matching to improve optical coherence tomography imaging through blood,” Circulation 10, 1999–2003 (2001).
[Crossref]

Genina, E.A.

D.M. Zhestkov, A.N. Bashkatov, E.A. Genina, and V.V. Tuchin, “Influence of clearing solutions osmolarity on the optical properties of RBC,” Proc. SPIE5474, (2004 to be published).
[Crossref]

Grinbaum, A.

Hahn, A.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm,” J. Biomed. Opt. 4, 36–43 (1999).
[Crossref] [PubMed]

Huang, C.H.

S. Cheng, H.Y. Shen, G. Zhang, C.H. Huang, and X.J. Huang, “Measurement of the refractive index of biotissue at four laser wavelengths,” in Optics in Health Care and Biomedical Optics: Diagnostics and Treatment, B. Chance, M. Chen, and G. Yoon, eds., Proc. SPIE4916, 172–176 (2002).

Huang, X.J.

S. Cheng, H.Y. Shen, G. Zhang, C.H. Huang, and X.J. Huang, “Measurement of the refractive index of biotissue at four laser wavelengths,” in Optics in Health Care and Biomedical Optics: Diagnostics and Treatment, B. Chance, M. Chen, and G. Yoon, eds., Proc. SPIE4916, 172–176 (2002).

Huffman, D.

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1983).

Jesser, C.

M. Brezinski, K. Saunders, C. Jesser, X. Li, and J. Fujimoto, “Index matching to improve optical coherence tomography imaging through blood,” Circulation 10, 1999–2003 (2001).
[Crossref]

Khairullina, A.Ya.

A.Ya. Khairullina and S.F. Shumilina, “Determination of the distribution function of erythrocytes according to size by the spectral transparency method,” J. Appl. Spectrosc. 19, 1078–1083 (1973).
[Crossref]

Khlebtsov, N.G.

N.G. Khlebtsov and S.Yu. Shchyogolev, “Account of particle nonsphericity at determination of parameters of dispersion systems by a turbidity spectrum method. 1. Characteristic functions of light scattering by nonspherical particle systems in Rayleigh-Gans approximation,” Opt. Spectrosc. 42, 956–962 (1977)

Kumar, G.

Li, X.

M. Brezinski, K. Saunders, C. Jesser, X. Li, and J. Fujimoto, “Index matching to improve optical coherence tomography imaging through blood,” Circulation 10, 1999–2003 (2001).
[Crossref]

Metz, M.G.

Muller, G.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm,” J. Biomed. Opt. 4, 36–43 (1999).
[Crossref] [PubMed]

Naats, E.I.

A.G. Borovoi, E.I. Naats, and U.G. Oppel, “Scattering of Light by a Red Blood Cell,” J. Biomed. Opt. 3, 364–372 (1998).
[Crossref] [PubMed]

Oppel, U.G.

A.G. Borovoi, E.I. Naats, and U.G. Oppel, “Scattering of Light by a Red Blood Cell,” J. Biomed. Opt. 3, 364–372 (1998).
[Crossref] [PubMed]

Roggan, A.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm,” J. Biomed. Opt. 4, 36–43 (1999).
[Crossref] [PubMed]

Saunders, K.

M. Brezinski, K. Saunders, C. Jesser, X. Li, and J. Fujimoto, “Index matching to improve optical coherence tomography imaging through blood,” Circulation 10, 1999–2003 (2001).
[Crossref]

Schmitt, J.M.

Shchyogolev, S.Yu.

N.G. Khlebtsov and S.Yu. Shchyogolev, “Account of particle nonsphericity at determination of parameters of dispersion systems by a turbidity spectrum method. 1. Characteristic functions of light scattering by nonspherical particle systems in Rayleigh-Gans approximation,” Opt. Spectrosc. 42, 956–962 (1977)

Shen, H.Y.

S. Cheng, H.Y. Shen, G. Zhang, C.H. Huang, and X.J. Huang, “Measurement of the refractive index of biotissue at four laser wavelengths,” in Optics in Health Care and Biomedical Optics: Diagnostics and Treatment, B. Chance, M. Chen, and G. Yoon, eds., Proc. SPIE4916, 172–176 (2002).

Shepherd, A.P.

J.M. Steinke and A.P. Shepherd, “Diffusion model of the optical absorbance of whole blood,” J. Opt. Soc. Am. A. 5, 813–822 (1988).
[Crossref] [PubMed]

Shumilina, S.F.

A.Ya. Khairullina and S.F. Shumilina, “Determination of the distribution function of erythrocytes according to size by the spectral transparency method,” J. Appl. Spectrosc. 19, 1078–1083 (1973).
[Crossref]

Steinke, J.M.

J.M. Steinke and A.P. Shepherd, “Diffusion model of the optical absorbance of whole blood,” J. Opt. Soc. Am. A. 5, 813–822 (1988).
[Crossref] [PubMed]

Tuchin, V.V.

X. Xu, R.K. Wang, J.B. Elder, and V.V. Tuchin, “Effect of dextran-induced changes in refractive index and aggregation on optical properties of whole blood,” Phys. Med. Biol. 48, 1205–1221 (2003).
[Crossref] [PubMed]

V.V. Tuchin, X. Xu, and R. K. Wang, “Dynamic optical coherence tomography in studies of optical clearing, sedimentation, and aggregation of immersed blood,” Appl. Opt. 47, 258–271 (2002).
[Crossref]

V.V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE Press, TT38, Bellingham, Washington, 2000)

D.M. Zhestkov, A.N. Bashkatov, E.A. Genina, and V.V. Tuchin, “Influence of clearing solutions osmolarity on the optical properties of RBC,” Proc. SPIE5474, (2004 to be published).
[Crossref]

Tycko, D.H.

Wang, R. K.

V.V. Tuchin, X. Xu, and R. K. Wang, “Dynamic optical coherence tomography in studies of optical clearing, sedimentation, and aggregation of immersed blood,” Appl. Opt. 47, 258–271 (2002).
[Crossref]

Wang, R.K.

X. Xu, R.K. Wang, J.B. Elder, and V.V. Tuchin, “Effect of dextran-induced changes in refractive index and aggregation on optical properties of whole blood,” Phys. Med. Biol. 48, 1205–1221 (2003).
[Crossref] [PubMed]

Xu, X.

X. Xu, R.K. Wang, J.B. Elder, and V.V. Tuchin, “Effect of dextran-induced changes in refractive index and aggregation on optical properties of whole blood,” Phys. Med. Biol. 48, 1205–1221 (2003).
[Crossref] [PubMed]

V.V. Tuchin, X. Xu, and R. K. Wang, “Dynamic optical coherence tomography in studies of optical clearing, sedimentation, and aggregation of immersed blood,” Appl. Opt. 47, 258–271 (2002).
[Crossref]

Zhang, G.

S. Cheng, H.Y. Shen, G. Zhang, C.H. Huang, and X.J. Huang, “Measurement of the refractive index of biotissue at four laser wavelengths,” in Optics in Health Care and Biomedical Optics: Diagnostics and Treatment, B. Chance, M. Chen, and G. Yoon, eds., Proc. SPIE4916, 172–176 (2002).

Zhestkov, D.M.

D.M. Zhestkov, A.N. Bashkatov, E.A. Genina, and V.V. Tuchin, “Influence of clearing solutions osmolarity on the optical properties of RBC,” Proc. SPIE5474, (2004 to be published).
[Crossref]

Appl. Opt. (3)

Circulation (1)

M. Brezinski, K. Saunders, C. Jesser, X. Li, and J. Fujimoto, “Index matching to improve optical coherence tomography imaging through blood,” Circulation 10, 1999–2003 (2001).
[Crossref]

J. Appl. Spectrosc. (1)

A.Ya. Khairullina and S.F. Shumilina, “Determination of the distribution function of erythrocytes according to size by the spectral transparency method,” J. Appl. Spectrosc. 19, 1078–1083 (1973).
[Crossref]

J. Biomed. Opt. (2)

A.G. Borovoi, E.I. Naats, and U.G. Oppel, “Scattering of Light by a Red Blood Cell,” J. Biomed. Opt. 3, 364–372 (1998).
[Crossref] [PubMed]

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm,” J. Biomed. Opt. 4, 36–43 (1999).
[Crossref] [PubMed]

J. Opt. Soc. Am. A. (1)

J.M. Steinke and A.P. Shepherd, “Diffusion model of the optical absorbance of whole blood,” J. Opt. Soc. Am. A. 5, 813–822 (1988).
[Crossref] [PubMed]

Opt. Spectrosc. (1)

N.G. Khlebtsov and S.Yu. Shchyogolev, “Account of particle nonsphericity at determination of parameters of dispersion systems by a turbidity spectrum method. 1. Characteristic functions of light scattering by nonspherical particle systems in Rayleigh-Gans approximation,” Opt. Spectrosc. 42, 956–962 (1977)

Phys. Med. Biol. (1)

X. Xu, R.K. Wang, J.B. Elder, and V.V. Tuchin, “Effect of dextran-induced changes in refractive index and aggregation on optical properties of whole blood,” Phys. Med. Biol. 48, 1205–1221 (2003).
[Crossref] [PubMed]

Other (7)

D.M. Zhestkov, A.N. Bashkatov, E.A. Genina, and V.V. Tuchin, “Influence of clearing solutions osmolarity on the optical properties of RBC,” Proc. SPIE5474, (2004 to be published).
[Crossref]

V.V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE Press, TT38, Bellingham, Washington, 2000)

V.V. Tuchin (ed.), Handbook of Optical Biomedical Diagnostics (PM107, SPIE Press, Bellingham, WA, 2002).

Tuan Vo-Dinh (ed.), Biomedical Photonics Handbook (CRC Press, Boca Raton, 2003).
[Crossref]

B.E. Bouma and G.J. Tearney (eds.), Handbook of Optical Coherence Tomography (Marcel-Dekker, New York, 2002).

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1983).

S. Cheng, H.Y. Shen, G. Zhang, C.H. Huang, and X.J. Huang, “Measurement of the refractive index of biotissue at four laser wavelengths,” in Optics in Health Care and Biomedical Optics: Diagnostics and Treatment, B. Chance, M. Chen, and G. Yoon, eds., Proc. SPIE4916, 172–176 (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The absorption spectra at different degree of whole blood hemolysis.

Fig. 2.
Fig. 2.

The change of scattering spectrum at different degree of blood hemolysis

Fig. 3.
Fig. 3.

Scattering coefficient (red) and anisotropy factor (blue) versus the degree of blood hemolysis.

Tables (2)

Tables Icon

Table 1. The calculated values of local blood hematocrit and hemoglobin concentration in plasma at different degree of hemolysis.

Tables Icon

Table 2. Size distribution of spherical particles modeling RBC a

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n Hb ( λ ) = n water ( λ ) + α C ,
χ Hb ( λ ) = β C ,
n p Hb ( λ ) = n pl ( λ ) + α C ,
osm pl = osm pl + C FHb M Hb ,
V ( osm ) = V 0 ( 0.515 + 1.177 exp ( osm 337 ) ) ,
m im = n e n p + χ e β C FHb n p 2 + β 2 C FHb 2 + i χ e n p n e β C FHb n p 2 + β 2 C FHb 2 ,

Metrics