Abstract

Photoconductive (PC) antennas fabricated on InP bombarded with 180 keV protons of different dosages (InP:H+) all exhibit a useful bandwidth of about 30 THz, comparable to that of the LT-GaAs PC antenna. The peak signal current of the best InP: H+ device (dosage of 1015 ions/cm2) is slightly higher than that of the LT-GaAs one, while the signal-to-noise ratio (SNR) of the former is about half of that of the latter due to lower resistivity. This suggests that InP: H+ can be a good substrate for THz PC antennas with proper annealing and/or implantation recipe.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. E. Ralph, S. Perkowitz, N. Katzennellenbogen, and D. Grischkowsky, ???Terahertz spectroscopy of optically thick multilayered semiconductor structures,??? J. Opt. Soc. Am. B 11, 2528-2532 (1994).
    [CrossRef]
  2. P. Gu, M. Tani, K. Sakai, and T.-R. Yang, ???Detection of terahertz radiation from longitudinal optical phonon???plasmon coupling modes in InSb film using an ultrabroadband photoconductive antenna,??? Appl. Phys. Lett. 77, 1798-1800 (2000).
    [CrossRef]
  3. S. Kono, M. Tani, Ping Gu, and K. Sakai, ???Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,??? Appl. Phys. Lett. 77, 4104-4106 (2000).
    [CrossRef]
  4. S. Kono, M. Tani, and K. Sakai, ???Ultrabroadband photoconductive detection: Comparison with free-space electro-optic sampling,??? Appl. Phys. Lett. 79, 898-900 (2001).
    [CrossRef]
  5. T. A. Liu, M. Tani, M. Nakajima, M. Hangyo and C. L. Pan, ???Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,??? Appl. Phys. Lett. 83, 1322-1324 (2003).
    [CrossRef]
  6. M. Tani, K. Sakai and H. Mimura, ???Ultrafast Photoconductive Detectors Based on Semi-Insulating GaAs and InP,??? Jpn. J. Appl. Phys. 36, L1175-L1178 (1997).
    [CrossRef]
  7. B. W. Liang, P. Z. Lee, D. W. Shih, and C. W. Tu, ???Electrical properties of InP grown by gas-source molecular beam epitaxy at low temperature,??? Appl. Phys. Lett. 60, 2104-2106 (1992).
    [CrossRef]
  8. K. F. Lamprecht, S. Juen, L. Palmetshofer, and R. A. Höpfel, ???Ultrashort carrier lifetimes in H+ bombarded InP,??? Appl. Phys. Lett. 59, 926-928 (1991).
    [CrossRef]
  9. C. Messner, H. Kostner, R. A. Höpfel, and K. Unterrainer, ???Time-resolved THz spectroscopy of proton-bombarded InP,??? J. Opt. Soc. Am. B 18, 1369-1371 (2001).
    [CrossRef]
  10. H. Boudinov, J.P. De Souza, and C. Jagadish, ???Electtical isolation of n-type InP by ion bombardment: Dose dependence and thermal stability,??? Nucl. Instr. And Meth. B. 175, 235-240 (2001).
    [CrossRef]
  11. G. R. Lin, W. C. Chen, S. C. Chao, C. S. Chang, K. H. Wu, T. M. Hsu, W. C. Lee, and C. L. Pan, ???Material and Ultrafast Optoelectronic Properties of Furnace-Annealed Arsenic-Ion-Implanted GaAs,??? IEEE J. Quantum Electron. 34, 1740-1748, (1998).
    [CrossRef]
  12. A. R. H. Cole, Tables of Wave numbers for the Calibration of Infrared Spectrometers (Pergamon, Oxford, 1977).
  13. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edition (Wiley, New York 1986), pp. 474.
  14. L. Duvillaret, F. Garet, J-F. Roux, and J-L. Coutaz, ???Analytical Modeling and Optimization of Terahertz Time-Domain Spectroscopy Experiments Using Photoswitches as Antennas,??? IEEE J. Sel. Top. Quantum Electron. 7, 615-623 (2001).
    [CrossRef]

Appl. Phys. Lett.

P. Gu, M. Tani, K. Sakai, and T.-R. Yang, ???Detection of terahertz radiation from longitudinal optical phonon???plasmon coupling modes in InSb film using an ultrabroadband photoconductive antenna,??? Appl. Phys. Lett. 77, 1798-1800 (2000).
[CrossRef]

S. Kono, M. Tani, Ping Gu, and K. Sakai, ???Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,??? Appl. Phys. Lett. 77, 4104-4106 (2000).
[CrossRef]

S. Kono, M. Tani, and K. Sakai, ???Ultrabroadband photoconductive detection: Comparison with free-space electro-optic sampling,??? Appl. Phys. Lett. 79, 898-900 (2001).
[CrossRef]

T. A. Liu, M. Tani, M. Nakajima, M. Hangyo and C. L. Pan, ???Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,??? Appl. Phys. Lett. 83, 1322-1324 (2003).
[CrossRef]

B. W. Liang, P. Z. Lee, D. W. Shih, and C. W. Tu, ???Electrical properties of InP grown by gas-source molecular beam epitaxy at low temperature,??? Appl. Phys. Lett. 60, 2104-2106 (1992).
[CrossRef]

K. F. Lamprecht, S. Juen, L. Palmetshofer, and R. A. Höpfel, ???Ultrashort carrier lifetimes in H+ bombarded InP,??? Appl. Phys. Lett. 59, 926-928 (1991).
[CrossRef]

IEEE J. Quantum Electron.

G. R. Lin, W. C. Chen, S. C. Chao, C. S. Chang, K. H. Wu, T. M. Hsu, W. C. Lee, and C. L. Pan, ???Material and Ultrafast Optoelectronic Properties of Furnace-Annealed Arsenic-Ion-Implanted GaAs,??? IEEE J. Quantum Electron. 34, 1740-1748, (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

L. Duvillaret, F. Garet, J-F. Roux, and J-L. Coutaz, ???Analytical Modeling and Optimization of Terahertz Time-Domain Spectroscopy Experiments Using Photoswitches as Antennas,??? IEEE J. Sel. Top. Quantum Electron. 7, 615-623 (2001).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

M. Tani, K. Sakai and H. Mimura, ???Ultrafast Photoconductive Detectors Based on Semi-Insulating GaAs and InP,??? Jpn. J. Appl. Phys. 36, L1175-L1178 (1997).
[CrossRef]

Nucl. Instr. And Meth. B.

H. Boudinov, J.P. De Souza, and C. Jagadish, ???Electtical isolation of n-type InP by ion bombardment: Dose dependence and thermal stability,??? Nucl. Instr. And Meth. B. 175, 235-240 (2001).
[CrossRef]

Other

A. R. H. Cole, Tables of Wave numbers for the Calibration of Infrared Spectrometers (Pergamon, Oxford, 1977).

K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edition (Wiley, New York 1986), pp. 474.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Current-voltage (I–V) measurement (a) without and (b) with optical illumination for InP: H+, doses of 1015 (square dot), 3×1015 (circle dot), 1016 (triangular dot), 3×1016 (diamond dot) ions/cm2 and LT-GaAs (open circle) PC antennas with 5 µm gap in the weak bias case.

Fig. 2.
Fig. 2.

Time-resolved ultrabroadband THz radiation waveforms detected by a PC antenna fabricated on InP: H+ at doses of (a) 1015, (b) 3×1015, (c) 1016, (d) 3×1016 ions/cm2 and (e) LT-GaAs.

Fig. 3.
Fig. 3.

Fourier transformed amplitude spectra of the PC-detected THz pulses shown in Fig. 2. Some spectra are enlarged for easier viewing.

Fig. 4.
Fig. 4.

Noise level of different InP: H+ samples and relative to that of a LT-GaAs PC antenna are plotted as a function of conductance. Circle dot is the data point, dashed line is the fitting curve.

Tables (1)

Tables Icon

Table 1. Comparison of characteristics PC antenna detectors.

Metrics