Abstract

Three multiplexed holographic gratings were used to fabricate 3D photonic crystals without complete band gap using ultra-fine grain holographic emulsion as the storage material. Theoretical and experimental studies were carried out in order to characterize the crystals. Good agreement between theory and experimental results was obtained, showing that it is possible to obtain a band-pass filter for a fixed direction of illumination.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Campbell, D. Sharp, M. T. Harrison, R. G. Denning, and A. J. Tuberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
    [Crossref] [PubMed]
  2. Y. Zhicheng, J. Zheng, D. Liu, and P. Shouyong, “Structures of photonic crystals and band gaps in volume holograms,” Phys. Lett. A 299, 313–317 (2002).
    [Crossref]
  3. D. T. Sharp, M. Campbell, E. Dedman, M. Harrison, D. R.G, and A. J. Tuberfield, “Photonic crystals for the visible spectrum by holographic lithography,” Opt. and Quantum Electronics 34, 3–12 (2002).
    [Crossref]
  4. T. Ohira, T. Segawa, K. Nagai, K. Utaka, and M. Nakao, “Large area InP submicron two-dimensional (2D) periodic structures fabricated by two-time laser holography,” Jpn. J. Appl. Phys. 41, 1085–1089 (2002).
    [Crossref]
  5. Y. Miklyaev, D. Meisel, A. Blanco, and G. Freymann, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett 82, 1284–1286 (2003).
    [Crossref]
  6. K. Saravanamuttu, C. Blanford, D. Sharp, E. Dedman, A. Tuberfield, and R. Denning, “Sol-Gel Organic-Inorganic composites for 3-D holographic lithography of photonic crystals with submicron periodicity,” Chem. Mater. 15, 2301–2304 (2003).
    [Crossref]
  7. G. Wang, C. Tan, Y. Xi, and H. Shan, “Holography for one-step fabrication of three-dimensional metallodielectric photonic crystals with a single continuous wavelength laser beam,” J. Mod. Opt 50, 2155–2161 (2003).
  8. L. Cai, L. Yang, and Y. Wang, “Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams,” J. Opt. Soc. Am-A 19, 2238–2244 (2002).
    [Crossref]
  9. M. Ulibarrena, L. Carretero, R. F. Madrigal, S. Blaya, and A. Fimia, “Multiple band holographic reflection gratings recorded in new ultra-fine grain emulsion BBVPan,” Opt. Express 11, 3385–3392 (2003). www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3385
    [Crossref] [PubMed]
  10. M. Ulibarrena, L. Carretero, R. F. Madrigal, S. Blaya, and A. Fimia, “Nonlinear effects on holographic reflection gratings recorded with BB640 emulsions,” Opt. Express 11, 1906–1917 (2003). www.opticsexpress.org/abstract.cfm?URI=OPEX-11-16-1906
    [Crossref] [PubMed]
  11. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173
    [Crossref] [PubMed]
  12. www.colourholographic.com
  13. Y. N. Denisyuk, Photographic reconstruction of the optical properties of an object in its own scattered radiation field, vol. MS 171 of Milestone Series, pp. 22–24 (SPIE, 2001).
  14. M. Ulibarrena, M. J. Méndez, S. Blaya, R. F. Madrigal, L. Carretero, and A. Fimia, “New processing techniques for reflection holograms recorded on BB640 holographic emulsions,” in Practical Holography XVII and Holographic Materials IX, T. H. Jeong and S. H. Stevenson, eds., pp. 65–74, SPIE (SPIE, 2003).

2003 (5)

Y. Miklyaev, D. Meisel, A. Blanco, and G. Freymann, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett 82, 1284–1286 (2003).
[Crossref]

K. Saravanamuttu, C. Blanford, D. Sharp, E. Dedman, A. Tuberfield, and R. Denning, “Sol-Gel Organic-Inorganic composites for 3-D holographic lithography of photonic crystals with submicron periodicity,” Chem. Mater. 15, 2301–2304 (2003).
[Crossref]

G. Wang, C. Tan, Y. Xi, and H. Shan, “Holography for one-step fabrication of three-dimensional metallodielectric photonic crystals with a single continuous wavelength laser beam,” J. Mod. Opt 50, 2155–2161 (2003).

M. Ulibarrena, L. Carretero, R. F. Madrigal, S. Blaya, and A. Fimia, “Nonlinear effects on holographic reflection gratings recorded with BB640 emulsions,” Opt. Express 11, 1906–1917 (2003). www.opticsexpress.org/abstract.cfm?URI=OPEX-11-16-1906
[Crossref] [PubMed]

M. Ulibarrena, L. Carretero, R. F. Madrigal, S. Blaya, and A. Fimia, “Multiple band holographic reflection gratings recorded in new ultra-fine grain emulsion BBVPan,” Opt. Express 11, 3385–3392 (2003). www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3385
[Crossref] [PubMed]

2002 (4)

Y. Zhicheng, J. Zheng, D. Liu, and P. Shouyong, “Structures of photonic crystals and band gaps in volume holograms,” Phys. Lett. A 299, 313–317 (2002).
[Crossref]

D. T. Sharp, M. Campbell, E. Dedman, M. Harrison, D. R.G, and A. J. Tuberfield, “Photonic crystals for the visible spectrum by holographic lithography,” Opt. and Quantum Electronics 34, 3–12 (2002).
[Crossref]

T. Ohira, T. Segawa, K. Nagai, K. Utaka, and M. Nakao, “Large area InP submicron two-dimensional (2D) periodic structures fabricated by two-time laser holography,” Jpn. J. Appl. Phys. 41, 1085–1089 (2002).
[Crossref]

L. Cai, L. Yang, and Y. Wang, “Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams,” J. Opt. Soc. Am-A 19, 2238–2244 (2002).
[Crossref]

2001 (1)

2000 (1)

M. Campbell, D. Sharp, M. T. Harrison, R. G. Denning, and A. J. Tuberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[Crossref] [PubMed]

Blanco, A.

Y. Miklyaev, D. Meisel, A. Blanco, and G. Freymann, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett 82, 1284–1286 (2003).
[Crossref]

Blanford, C.

K. Saravanamuttu, C. Blanford, D. Sharp, E. Dedman, A. Tuberfield, and R. Denning, “Sol-Gel Organic-Inorganic composites for 3-D holographic lithography of photonic crystals with submicron periodicity,” Chem. Mater. 15, 2301–2304 (2003).
[Crossref]

Blaya, S.

Cai, L.

L. Cai, L. Yang, and Y. Wang, “Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams,” J. Opt. Soc. Am-A 19, 2238–2244 (2002).
[Crossref]

Campbell, M.

D. T. Sharp, M. Campbell, E. Dedman, M. Harrison, D. R.G, and A. J. Tuberfield, “Photonic crystals for the visible spectrum by holographic lithography,” Opt. and Quantum Electronics 34, 3–12 (2002).
[Crossref]

M. Campbell, D. Sharp, M. T. Harrison, R. G. Denning, and A. J. Tuberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[Crossref] [PubMed]

Carretero, L.

D. R.G,

D. T. Sharp, M. Campbell, E. Dedman, M. Harrison, D. R.G, and A. J. Tuberfield, “Photonic crystals for the visible spectrum by holographic lithography,” Opt. and Quantum Electronics 34, 3–12 (2002).
[Crossref]

Dedman, E.

K. Saravanamuttu, C. Blanford, D. Sharp, E. Dedman, A. Tuberfield, and R. Denning, “Sol-Gel Organic-Inorganic composites for 3-D holographic lithography of photonic crystals with submicron periodicity,” Chem. Mater. 15, 2301–2304 (2003).
[Crossref]

D. T. Sharp, M. Campbell, E. Dedman, M. Harrison, D. R.G, and A. J. Tuberfield, “Photonic crystals for the visible spectrum by holographic lithography,” Opt. and Quantum Electronics 34, 3–12 (2002).
[Crossref]

Denisyuk, Y. N.

Y. N. Denisyuk, Photographic reconstruction of the optical properties of an object in its own scattered radiation field, vol. MS 171 of Milestone Series, pp. 22–24 (SPIE, 2001).

Denning, R.

K. Saravanamuttu, C. Blanford, D. Sharp, E. Dedman, A. Tuberfield, and R. Denning, “Sol-Gel Organic-Inorganic composites for 3-D holographic lithography of photonic crystals with submicron periodicity,” Chem. Mater. 15, 2301–2304 (2003).
[Crossref]

Denning, R. G.

M. Campbell, D. Sharp, M. T. Harrison, R. G. Denning, and A. J. Tuberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[Crossref] [PubMed]

Fimia, A.

Freymann, G.

Y. Miklyaev, D. Meisel, A. Blanco, and G. Freymann, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett 82, 1284–1286 (2003).
[Crossref]

Harrison, M.

D. T. Sharp, M. Campbell, E. Dedman, M. Harrison, D. R.G, and A. J. Tuberfield, “Photonic crystals for the visible spectrum by holographic lithography,” Opt. and Quantum Electronics 34, 3–12 (2002).
[Crossref]

Harrison, M. T.

M. Campbell, D. Sharp, M. T. Harrison, R. G. Denning, and A. J. Tuberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[Crossref] [PubMed]

Joannopoulos, J. D.

Johnson, S. G.

Liu, D.

Y. Zhicheng, J. Zheng, D. Liu, and P. Shouyong, “Structures of photonic crystals and band gaps in volume holograms,” Phys. Lett. A 299, 313–317 (2002).
[Crossref]

Madrigal, R. F.

Meisel, D.

Y. Miklyaev, D. Meisel, A. Blanco, and G. Freymann, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett 82, 1284–1286 (2003).
[Crossref]

Méndez, M. J.

M. Ulibarrena, M. J. Méndez, S. Blaya, R. F. Madrigal, L. Carretero, and A. Fimia, “New processing techniques for reflection holograms recorded on BB640 holographic emulsions,” in Practical Holography XVII and Holographic Materials IX, T. H. Jeong and S. H. Stevenson, eds., pp. 65–74, SPIE (SPIE, 2003).

Miklyaev, Y.

Y. Miklyaev, D. Meisel, A. Blanco, and G. Freymann, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett 82, 1284–1286 (2003).
[Crossref]

Nagai, K.

T. Ohira, T. Segawa, K. Nagai, K. Utaka, and M. Nakao, “Large area InP submicron two-dimensional (2D) periodic structures fabricated by two-time laser holography,” Jpn. J. Appl. Phys. 41, 1085–1089 (2002).
[Crossref]

Nakao, M.

T. Ohira, T. Segawa, K. Nagai, K. Utaka, and M. Nakao, “Large area InP submicron two-dimensional (2D) periodic structures fabricated by two-time laser holography,” Jpn. J. Appl. Phys. 41, 1085–1089 (2002).
[Crossref]

Ohira, T.

T. Ohira, T. Segawa, K. Nagai, K. Utaka, and M. Nakao, “Large area InP submicron two-dimensional (2D) periodic structures fabricated by two-time laser holography,” Jpn. J. Appl. Phys. 41, 1085–1089 (2002).
[Crossref]

Saravanamuttu, K.

K. Saravanamuttu, C. Blanford, D. Sharp, E. Dedman, A. Tuberfield, and R. Denning, “Sol-Gel Organic-Inorganic composites for 3-D holographic lithography of photonic crystals with submicron periodicity,” Chem. Mater. 15, 2301–2304 (2003).
[Crossref]

Segawa, T.

T. Ohira, T. Segawa, K. Nagai, K. Utaka, and M. Nakao, “Large area InP submicron two-dimensional (2D) periodic structures fabricated by two-time laser holography,” Jpn. J. Appl. Phys. 41, 1085–1089 (2002).
[Crossref]

Shan, H.

G. Wang, C. Tan, Y. Xi, and H. Shan, “Holography for one-step fabrication of three-dimensional metallodielectric photonic crystals with a single continuous wavelength laser beam,” J. Mod. Opt 50, 2155–2161 (2003).

Sharp, D.

K. Saravanamuttu, C. Blanford, D. Sharp, E. Dedman, A. Tuberfield, and R. Denning, “Sol-Gel Organic-Inorganic composites for 3-D holographic lithography of photonic crystals with submicron periodicity,” Chem. Mater. 15, 2301–2304 (2003).
[Crossref]

M. Campbell, D. Sharp, M. T. Harrison, R. G. Denning, and A. J. Tuberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[Crossref] [PubMed]

Sharp, D. T.

D. T. Sharp, M. Campbell, E. Dedman, M. Harrison, D. R.G, and A. J. Tuberfield, “Photonic crystals for the visible spectrum by holographic lithography,” Opt. and Quantum Electronics 34, 3–12 (2002).
[Crossref]

Shouyong, P.

Y. Zhicheng, J. Zheng, D. Liu, and P. Shouyong, “Structures of photonic crystals and band gaps in volume holograms,” Phys. Lett. A 299, 313–317 (2002).
[Crossref]

Tan, C.

G. Wang, C. Tan, Y. Xi, and H. Shan, “Holography for one-step fabrication of three-dimensional metallodielectric photonic crystals with a single continuous wavelength laser beam,” J. Mod. Opt 50, 2155–2161 (2003).

Tuberfield, A.

K. Saravanamuttu, C. Blanford, D. Sharp, E. Dedman, A. Tuberfield, and R. Denning, “Sol-Gel Organic-Inorganic composites for 3-D holographic lithography of photonic crystals with submicron periodicity,” Chem. Mater. 15, 2301–2304 (2003).
[Crossref]

Tuberfield, A. J.

D. T. Sharp, M. Campbell, E. Dedman, M. Harrison, D. R.G, and A. J. Tuberfield, “Photonic crystals for the visible spectrum by holographic lithography,” Opt. and Quantum Electronics 34, 3–12 (2002).
[Crossref]

M. Campbell, D. Sharp, M. T. Harrison, R. G. Denning, and A. J. Tuberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[Crossref] [PubMed]

Ulibarrena, M.

Utaka, K.

T. Ohira, T. Segawa, K. Nagai, K. Utaka, and M. Nakao, “Large area InP submicron two-dimensional (2D) periodic structures fabricated by two-time laser holography,” Jpn. J. Appl. Phys. 41, 1085–1089 (2002).
[Crossref]

Wang, G.

G. Wang, C. Tan, Y. Xi, and H. Shan, “Holography for one-step fabrication of three-dimensional metallodielectric photonic crystals with a single continuous wavelength laser beam,” J. Mod. Opt 50, 2155–2161 (2003).

Wang, Y.

L. Cai, L. Yang, and Y. Wang, “Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams,” J. Opt. Soc. Am-A 19, 2238–2244 (2002).
[Crossref]

Xi, Y.

G. Wang, C. Tan, Y. Xi, and H. Shan, “Holography for one-step fabrication of three-dimensional metallodielectric photonic crystals with a single continuous wavelength laser beam,” J. Mod. Opt 50, 2155–2161 (2003).

Yang, L.

L. Cai, L. Yang, and Y. Wang, “Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams,” J. Opt. Soc. Am-A 19, 2238–2244 (2002).
[Crossref]

Zheng, J.

Y. Zhicheng, J. Zheng, D. Liu, and P. Shouyong, “Structures of photonic crystals and band gaps in volume holograms,” Phys. Lett. A 299, 313–317 (2002).
[Crossref]

Zhicheng, Y.

Y. Zhicheng, J. Zheng, D. Liu, and P. Shouyong, “Structures of photonic crystals and band gaps in volume holograms,” Phys. Lett. A 299, 313–317 (2002).
[Crossref]

Appl. Phys. Lett (1)

Y. Miklyaev, D. Meisel, A. Blanco, and G. Freymann, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett 82, 1284–1286 (2003).
[Crossref]

Chem. Mater. (1)

K. Saravanamuttu, C. Blanford, D. Sharp, E. Dedman, A. Tuberfield, and R. Denning, “Sol-Gel Organic-Inorganic composites for 3-D holographic lithography of photonic crystals with submicron periodicity,” Chem. Mater. 15, 2301–2304 (2003).
[Crossref]

J. Mod. Opt (1)

G. Wang, C. Tan, Y. Xi, and H. Shan, “Holography for one-step fabrication of three-dimensional metallodielectric photonic crystals with a single continuous wavelength laser beam,” J. Mod. Opt 50, 2155–2161 (2003).

J. Opt. Soc. Am-A (1)

L. Cai, L. Yang, and Y. Wang, “Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams,” J. Opt. Soc. Am-A 19, 2238–2244 (2002).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Ohira, T. Segawa, K. Nagai, K. Utaka, and M. Nakao, “Large area InP submicron two-dimensional (2D) periodic structures fabricated by two-time laser holography,” Jpn. J. Appl. Phys. 41, 1085–1089 (2002).
[Crossref]

Nature (1)

M. Campbell, D. Sharp, M. T. Harrison, R. G. Denning, and A. J. Tuberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[Crossref] [PubMed]

Opt. and Quantum Electronics (1)

D. T. Sharp, M. Campbell, E. Dedman, M. Harrison, D. R.G, and A. J. Tuberfield, “Photonic crystals for the visible spectrum by holographic lithography,” Opt. and Quantum Electronics 34, 3–12 (2002).
[Crossref]

Opt. Express (3)

Phys. Lett. A (1)

Y. Zhicheng, J. Zheng, D. Liu, and P. Shouyong, “Structures of photonic crystals and band gaps in volume holograms,” Phys. Lett. A 299, 313–317 (2002).
[Crossref]

Other (3)

www.colourholographic.com

Y. N. Denisyuk, Photographic reconstruction of the optical properties of an object in its own scattered radiation field, vol. MS 171 of Milestone Series, pp. 22–24 (SPIE, 2001).

M. Ulibarrena, M. J. Méndez, S. Blaya, R. F. Madrigal, L. Carretero, and A. Fimia, “New processing techniques for reflection holograms recorded on BB640 holographic emulsions,” in Practical Holography XVII and Holographic Materials IX, T. H. Jeong and S. H. Stevenson, eds., pp. 65–74, SPIE (SPIE, 2003).

Supplementary Material (1)

» Media 1: GIF (88 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Unit cell of the photonic crystal showed in Fig. 1(a), with vectors given by: a1=(492, 0, 0) nm, a2=(0, 492, 0) nm and a3=(0, 0, 204) nm. (b) Simulation of the isorefractive index surfaces of photonic crystal formed by multiplexing three diffraction gratings with vectors: G1=(0.013, 0, 0) nm -1, G2=(0, 0.013, 0) nm -1, G3=(0, 0, 0.031) nm -1.

Fig. 2.
Fig. 2.

Bands diagram generated by the photonic crystal with unit cell showed in figure 1(b). n 0=1.579, ni =0.03, G1=(0.013, 0, 0) nm -1, G2=(0, 0.013, 0) nm -1, G3=(0, 0, 0.031) nm -1

Fig. 3.
Fig. 3.

Experimental (a) and theoretical (b) bands diagrams generated by the photonic crystal with unit cell showed in Fig. 1(b) recorded in a photographic emulsion, with reconstruction direction along z axis.

Fig. 4.
Fig. 4.

(90 KB) Movie of the evolution of the transmission spectra of the band-pass filter starting with normal incidence along the Z axis and ending with the crystal rotated 48° around the Y axis, 9° around the X axis, 56° around the Z axis.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E vj = E vj 0 exp ( i K vj . r ) e ̂ vj
K vj = 2 π λ v ( l vj , m vj , n vj )
I = v = 1 3 ( ( E v 1 0 ) 2 + ( E v 2 0 ) 2 ) + 2 v = 1 3 E v 1 0 E v 2 0 Cos ( G v . r ) χ v , 12
G v = K v 1 K v 2
Cos ( G 1 . r ) = Cos ( G 2 . r ) = Cos ( G 3 . r ) = 1
L 1 . x + M 1 . y + N 1 . z = p 1 λ 1
L 2 . x + M 2 . y + N 2 . z = p 2 λ 2
L 3 . x + M 3 . y + N 3 . z = p 3 λ 3
a 1 = λ 1 det [ Q ] ( ( M 3 N 2 M 2 N 3 ) ( L 3 N 2 + L 2 N 3 ) ( L 3 M 2 L 2 M 3 ) )
a 2 = λ 2 det [ Q ] ( ( M 3 N 1 + M 1 N 3 ) ( L 3 N 1 L 1 N 3 ) ( L 3 M 1 + L 1 M 3 ) )
a 3 = λ 3 det [ Q ] ( ( M 2 N 1 M 1 N 2 ) ( L 2 N 1 + L 1 N 2 ) ( L 2 M 1 L 1 M 2 ) )
a 1 = a 2 = a ; a 3 = b ; a 1 . a 2 = 0 , a 1 . a 3 = 0 , a 2 . a 3 = 0 ;
n = n 0 + v = 1 3 n v Cos ( G v . r )

Metrics