Abstract

We demonstrate a 2-D wavelength demultiplexer by using a virtually imaged phased array (VIPA) and a diffraction grating in bulk optics, which yields a hyperfine channel spacing 5 GHz (40 pm) with 1.75 GHz (14 pm) -3dB bandwidth, >20dB channel isolations, and a very large free spectral range. The 2-D wavelength demultiplexer is capable of having a very large number (≥1000) of hyperfine channels in the C-band (1530–1570 nm). We also present the first analytic theory for the 2-D demultiplexer.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. Takada, M. Abe, T. Shibata, K. Okamoto, ???10-GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs,??? IEEE Photon. Technol. Lett. 13, 577-578 (2001)
    [CrossRef]
  2. M. Shirasaki, ???Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,??? Opt. Lett. 21, 366-368 (1996)
    [CrossRef] [PubMed]
  3. S. Xiao, A. M. Weiner, C. Lin, ???Demultiplexers with ~ 10 pm (1.25 GHz) -3dB transmission bandwidth using a virtually imaged phased array (VIPA),??? TuL1, Optical Fiber Communication Conference, (Optical Society of America, Washington D.C., 2004)
  4. S. Xiao, A. M. Weiner, C. Lin, ???Experimental and theoretical study of Hyperfine WDM Demultiplexer performance using the virtually-imaged phased-array (VIPA),??? submitted to IEEE/OSA J. Lightwave Technol
  5. S. Xiao, J. D. McKinney, A. M. Weiner, ???Photonic microwave arbitrary waveform generation using a virtually-imaged phased-array (VIPA) direct space-to-time pulse shaper,??? in press, IEEE Photon. Technol. Lett. (2004)
    [CrossRef]
  6. A. M. Weiner, ???Femtosecond pulse shaping using spatial light modulators,??? Rev. Sci. Instrum. 71, 1929- 1960 (2000)
    [CrossRef]
  7. R. D. Nelson, D. E. Leaird, A. M. Weiner, ???Programmable polarization-independent spectral phase compensation and pulse shaping,??? Opt. Express, 11, 1763-1769 (2003)
    [CrossRef] [PubMed]
  8. M. Shirasaki, ???Compensation of chromatic dispersion and dispersion slope using a virtually imaged phased array???, TuS1, Optical Fiber Communication Conference, (Optical Society of America, Washington D.C., 2001)
  9. S. Xiao, A. M. Weiner, C. Lin, ???A dispersion law for virtually-imaged phased-array (VIPA) spectral dispersers based on paraxial wave theory,??? IEEE J. Quantum Electron. 40, 420- 426 (2004)
    [CrossRef]

IEEE J. Quantum Electron. (1)

S. Xiao, A. M. Weiner, C. Lin, ???A dispersion law for virtually-imaged phased-array (VIPA) spectral dispersers based on paraxial wave theory,??? IEEE J. Quantum Electron. 40, 420- 426 (2004)
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Takada, M. Abe, T. Shibata, K. Okamoto, ???10-GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs,??? IEEE Photon. Technol. Lett. 13, 577-578 (2001)
[CrossRef]

S. Xiao, J. D. McKinney, A. M. Weiner, ???Photonic microwave arbitrary waveform generation using a virtually-imaged phased-array (VIPA) direct space-to-time pulse shaper,??? in press, IEEE Photon. Technol. Lett. (2004)
[CrossRef]

IEEE/OSA J. Lightwave Technol (1)

S. Xiao, A. M. Weiner, C. Lin, ???Experimental and theoretical study of Hyperfine WDM Demultiplexer performance using the virtually-imaged phased-array (VIPA),??? submitted to IEEE/OSA J. Lightwave Technol

Opt. Express (1)

Opt. Lett. (1)

Optical Fiber Communication Conference (2)

S. Xiao, A. M. Weiner, C. Lin, ???Demultiplexers with ~ 10 pm (1.25 GHz) -3dB transmission bandwidth using a virtually imaged phased array (VIPA),??? TuL1, Optical Fiber Communication Conference, (Optical Society of America, Washington D.C., 2004)

M. Shirasaki, ???Compensation of chromatic dispersion and dispersion slope using a virtually imaged phased array???, TuS1, Optical Fiber Communication Conference, (Optical Society of America, Washington D.C., 2001)

Rev. Sci. Instrum. (1)

A. M. Weiner, ???Femtosecond pulse shaping using spatial light modulators,??? Rev. Sci. Instrum. 71, 1929- 1960 (2000)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The layout of our 2-D spectral disperser. The grating disperses in y; the VIPA disperses in x. OSA: optical spectrum analyzer with 0.01 nm resolution in wavelength. CYL: cylindrical lens.

Fig. 2.
Fig. 2.

Photograph of our 2-D wavelength demultiplexer. (The beam expander shown in the photo is used only for our later experiment in connection with the data of Fig. 5.)

Fig 3.
Fig 3.

The 2-D wavelength demultiplexing. Peak wavelengths are demultiplexed to different (x, y). The red solid lines are approximate linear fittings to the demultiplexing data. The blue ellipses show the size at half maximum of the peak intensity for two selected peak wavelengths.

Fig. 4.
Fig. 4.

(a) is the 2-D multiple demultiplexing channels with center channel wavelengths corresponding to the data in Fig. 3, and (b) is the corresponding channel lineshape.

Fig. 5.
Fig. 5.

(a) is another sample of the demultiplexing channel response with improved insertion loss performance and same spatial dispersion compared to Fig. 4, and (b) is the corresponding channel lineshape.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I out ( x , y , λ ) I in ( ω ˜ ) exp ( 2 f c 2 x 2 f 2 W 2 ) 1 ( 1 R r ) 2 + 4 ( R r ) sin 2 ( k Δ 2 ) exp [ ( y α ω ˜ ) 2 w 0 2 ]
λ p λ 0 = λ 0 [ tan ( θ in ) cos ( θ i ) n r cos ( θ in ) x f + 1 2 1 n r 2 x 2 f 2 ]
λ p λ 0 = d cos ( θ d 0 ) y y 0 f
FWHM / frequency = c 2 π t n r cos ( θ i ) 1 R r R r ,
FWHM / wavelength = λ 0 2 2 π t n r cos ( θ i ) 1 R r R r ,

Metrics