Abstract

Kinoform phase plates (KPPs) are widely used in inertial confinement fusion to improve energy efficiency and to produce an optimum irradiance profile on the target plane. However KPPs are sensitive to beam aberrations and offer little flexibility in temporally tailoring the far-field pattern. To overcome these problems, we developed a multisegmented KPP and demonstrated temporal control of a focusing pattern and protection against phase distortions by numerical simulations.

©2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Kinoform phase plates for focal plane irradiance profile control

S. N. Dixit, J. K. Lawson, K. R. Manes, H. T. Powell, and K. A. Nugent
Opt. Lett. 19(6) 417-419 (1994)

Distributed phase plates for super-Gaussian focal-plane irradiance profiles

Y. Lin, T. J. Kessler, and G. N. Lawrence
Opt. Lett. 20(7) 764-766 (1995)

Pure-phase plates for super-Gaussian focal-plane irradiance profile generations of extremely high order

Xuegong Deng, Yongping Li, Dianyuan Fan, and Yue Qiu
Opt. Lett. 21(24) 1963-1965 (1996)

References

  • View by:
  • |
  • |
  • |

  1. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
    [Crossref]
  2. S. N. Dixit, J. K. Lawson, K. R. Manes, H. T. Powell, and K. A. Nugent, “Kinoform phase plates for focal plane irradiance profile control,” Opt. Lett. 19, 417–419 (1994).
    [PubMed]
  3. B. Kress and P. Meyrueis, Digital Diffractive Optics (Wiley, New York, 2000), pp. 201–208, 345.
  4. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane picture,” Optik 35, 237–246 (1972).
  5. N. C. Gallagher and B. Liu, “Method for computing kinoforms that reduces image reconstruction error,” Appl. Opt. 12, 2328–2335 (1973).
    [Crossref] [PubMed]
  6. J. R. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19, 297–305 (1980).
  7. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982).
    [Crossref] [PubMed]
  8. F. Wyrowski and O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography,” J. Opt. Soc. Am. A 5, 1058–1065 (1988).
    [Crossref]
  9. J. D. Lindl and W. C. Mead, “Two-dimensional simulation of fluid instability in laser-fusion pellets,” Phys. Rev. Lett. 34, 1273–1276 (1975).
    [Crossref]
  10. S. Enguehard, B. Hatfield, and E. Watson, “Beam shaping and control using a 2-D liquid crystal optical phased array,” in Proceedings of IEEE Aerospace Conference, 1464 (2004).
  11. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
    [Crossref]
  12. S. Matsuoka, N. Miyanaga, S. Amano, and M. Nakatsuka, “Frequency modulation controlled by cross-phase modulation in optical fiber,” Opt. Lett. 22, 25–27 (1997).
    [Crossref] [PubMed]
  13. G. Miyaji, N. Miyanaga, S. Urushihara, K. Suzuki, S. Matsuoka, M. Nakatsuka, A. Morimoto, and T. Kobayashi, “Three-directional spectral dispersion for smoothing of a laser irradiance profile,” Opt. Lett. 27, 725–727 (2002).
    [Crossref]

2002 (1)

1997 (1)

1994 (1)

1989 (1)

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[Crossref]

1988 (1)

1984 (1)

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[Crossref]

1982 (1)

1980 (1)

J. R. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19, 297–305 (1980).

1975 (1)

J. D. Lindl and W. C. Mead, “Two-dimensional simulation of fluid instability in laser-fusion pellets,” Phys. Rev. Lett. 34, 1273–1276 (1975).
[Crossref]

1973 (1)

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane picture,” Optik 35, 237–246 (1972).

Amano, S.

Arinaga, S.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[Crossref]

Bryngdahl, O.

Craxton, R. S.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[Crossref]

Dixit, S. N.

Enguehard, S.

S. Enguehard, B. Hatfield, and E. Watson, “Beam shaping and control using a 2-D liquid crystal optical phased array,” in Proceedings of IEEE Aerospace Conference, 1464 (2004).

Fienup, J. R.

J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982).
[Crossref] [PubMed]

J. R. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19, 297–305 (1980).

Gallagher, N. C.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane picture,” Optik 35, 237–246 (1972).

Hatfield, B.

S. Enguehard, B. Hatfield, and E. Watson, “Beam shaping and control using a 2-D liquid crystal optical phased array,” in Proceedings of IEEE Aerospace Conference, 1464 (2004).

Kato, Y.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[Crossref]

Kessler, T.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[Crossref]

Kitagawa, Y.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[Crossref]

Kobayashi, T.

Kress, B.

B. Kress and P. Meyrueis, Digital Diffractive Optics (Wiley, New York, 2000), pp. 201–208, 345.

Lawson, J. K.

Letzring, S.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[Crossref]

Lindl, J. D.

J. D. Lindl and W. C. Mead, “Two-dimensional simulation of fluid instability in laser-fusion pellets,” Phys. Rev. Lett. 34, 1273–1276 (1975).
[Crossref]

Liu, B.

Manes, K. R.

Matsuoka, S.

Mead, W. C.

J. D. Lindl and W. C. Mead, “Two-dimensional simulation of fluid instability in laser-fusion pellets,” Phys. Rev. Lett. 34, 1273–1276 (1975).
[Crossref]

Meyrueis, P.

B. Kress and P. Meyrueis, Digital Diffractive Optics (Wiley, New York, 2000), pp. 201–208, 345.

Mima, K.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[Crossref]

Miyaji, G.

Miyanaga, N.

Morimoto, A.

Nakatsuka, M.

Nugent, K. A.

Powell, H. T.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane picture,” Optik 35, 237–246 (1972).

Short, R. W.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[Crossref]

Skupsky, S.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[Crossref]

Soures, J. M.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[Crossref]

Suzuki, K.

Urushihara, S.

Watson, E.

S. Enguehard, B. Hatfield, and E. Watson, “Beam shaping and control using a 2-D liquid crystal optical phased array,” in Proceedings of IEEE Aerospace Conference, 1464 (2004).

Wyrowski, F.

Yamanaka, C.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[Crossref]

Appl. Opt. (2)

J. Appl. Phys. (1)

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

J. R. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19, 297–305 (1980).

Opt. Lett. (3)

Optik (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane picture,” Optik 35, 237–246 (1972).

Phys. Rev. Lett. (2)

J. D. Lindl and W. C. Mead, “Two-dimensional simulation of fluid instability in laser-fusion pellets,” Phys. Rev. Lett. 34, 1273–1276 (1975).
[Crossref]

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[Crossref]

Other (2)

B. Kress and P. Meyrueis, Digital Diffractive Optics (Wiley, New York, 2000), pp. 201–208, 345.

S. Enguehard, B. Hatfield, and E. Watson, “Beam shaping and control using a 2-D liquid crystal optical phased array,” in Proceedings of IEEE Aerospace Conference, 1464 (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Multiple patterning of a laser focus spot by use of a segmented kinoform phase plate: (a) phase distortion of a MS-KPP, (b) far-field pattern created by beam A, (c) far-field pattern created by beam B.
Fig. 2.
Fig. 2. Temporal focusing using a MS-KPP: intensity distribution in (a) the near field and (b) the far field.
Fig. 3.
Fig. 3. Conceptual diagram of a MS-KPP with protection against phase distortions: (a) segmentation of a KPP, (b) focusing patterns from each segment, (c) focusing pattern from the whole MS-KPP.
Fig. 4.
Fig. 4. Dependencies of the number of divisions on the influence of phase distortion for cases of two, four, and eiight divisions compared with that for a monolithic KPP.
Fig. 5.
Fig. 5. Dependencies of the number of divisions on the influence of phase distortion and energy efficiency for cases of two and four divisions compared with that for a monolithic KPP.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

g lm ( x , y ) = Π ( x A lm a ) Π ( y B lm a ) ,
Π ( ρ ) = { 1 ρ 1 2 0 ρ > 1 2 .
f ( x , y ) g lm ( x , y ) .

Metrics