Abstract

We investigated the characteristics of the near- and far-field regions of the interference for nano-metallic double-slits using a two-dimensional finite-difference time-domain (FDTD) method. We have found that the patterns in the near-field region have a phase difference of π with respect to those in the far-field region. A boundary, which separates the interference patterns of the two regions exists as a half circle and grows as the distance between the two slits increase. It is also found that evanescent waves can be enhanced and confined by coating the double-slit with a dielectric cladding.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C.J. Boukamp, ???Diffraction Theory,??? Rep. Prog. Phys. 17, 35 (1954).
    [CrossRef]
  2. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge 1999).
  3. T.W. Ebessen, H.J. Lezec, H.F. Ghaemi, and T. Thio, ???Extraordinary optical transmission through subwavelength hole arrays,??? Nature 391, 667 (1998).
    [CrossRef]
  4. J.A. Porto, F.J. García-Vidal, and J.B. Pendry, ???Transmission Resonances on Metallic Gratings with Very Narrow Slits,??? Phys. Rev. Lett. 83, 2845 (1999)
    [CrossRef]
  5. E. Popov, M. Nevière, S. Enoch, and R. Reinisch, ???Theory of light transmission through subwavelength periodic hole arrays,??? Phys. Rev. B 62, 16100 (2000).
    [CrossRef]
  6. L. Martín-Moreno, F.J. García-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, ???Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,??? Phys. Rev. Lett. 86, 1114 (2001)
    [CrossRef] [PubMed]
  7. Qing Cao and Philippe Lalanne, ???Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,??? Phys. Rev. Lett. 88, 57403 2002).
    [CrossRef]
  8. P.N Stavrinou, and L. Solymar, ???The propagation of electromagnetic power through subwavelength slits in a metallic grating,??? Opt. Commun. 206, 217 (2002).
    [CrossRef]
  9. F.I. Baida and D. Van Labeke, ???Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays,??? Phys. Rev. B 67, 155314 (2003).
    [CrossRef]
  10. J.M. Steele, C.E. Moran, A. Lee, C.M. Aguirre, and N.J. Halas, ???Metallodielectric gratins with subwavelength slots: Optical properties,??? Phys. Rev. B 68, 205103 (2003).
    [CrossRef]
  11. Pei-Kuen Wei, Hsieh-Li Chou, and Wun-Shain Fann, ???Optical near field in nanometallic slits,??? Opt. Express 10, 1418 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-24-1418">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-24-1418</a>.
    [CrossRef] [PubMed]
  12. Hugo F. Schouten, Taco D. Visser, Greg Gbur, Daan Lenstra, and Hans Blok, ???Creation and annihilation of phase singularities near a sub-wavelength slit,??? Opt. Express 11, 371 (2003), <a href="http://www.opticsexpress.org/abstract.cfm? URI=OPEX-11-4-371">http://www.opticsexpress.org/abstract.cfm? URI=OPEX-11-4-371</a>.
    [CrossRef] [PubMed]
  13. Hugo.F. Schouten, Taco D. Visser, Daan Lenstra, and Hans Blok, ???Light transmission through a subwavelength slit: Waveguiding and optical vortices,??? Phys. Rev. E 67, 36608 (2003).
    [CrossRef]
  14. Y. Takakura, ???Optical Resonance in a Narrow Slit in a Thick Metallic Screen,??? Phys. Rev. Lett. 86, 5601 (2001).
    [CrossRef] [PubMed]
  15. C. Bainier, D. Courjon, F. Baida, and C. Girard, ???Evanescent interferometry by scanning optical tunneling detection,??? J. Opt. Soc. Am. A 13, 267 (1996).
    [CrossRef]
  16. L. Novotny, B. Hecht, and D. W. Pohl, ???Interference of locally excited surface plasmons,??? J. Appl. Phys. 81, 1798 (1997).
    [CrossRef]
  17. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston 2000).

J. Appl. Phys.

L. Novotny, B. Hecht, and D. W. Pohl, ???Interference of locally excited surface plasmons,??? J. Appl. Phys. 81, 1798 (1997).
[CrossRef]

J. Opt. Soc. Am. A

Nature

T.W. Ebessen, H.J. Lezec, H.F. Ghaemi, and T. Thio, ???Extraordinary optical transmission through subwavelength hole arrays,??? Nature 391, 667 (1998).
[CrossRef]

Opt. Commun.

P.N Stavrinou, and L. Solymar, ???The propagation of electromagnetic power through subwavelength slits in a metallic grating,??? Opt. Commun. 206, 217 (2002).
[CrossRef]

Opt. Express

Phys. Rev. B

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, ???Theory of light transmission through subwavelength periodic hole arrays,??? Phys. Rev. B 62, 16100 (2000).
[CrossRef]

F.I. Baida and D. Van Labeke, ???Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays,??? Phys. Rev. B 67, 155314 (2003).
[CrossRef]

J.M. Steele, C.E. Moran, A. Lee, C.M. Aguirre, and N.J. Halas, ???Metallodielectric gratins with subwavelength slots: Optical properties,??? Phys. Rev. B 68, 205103 (2003).
[CrossRef]

Phys. Rev. E

Hugo.F. Schouten, Taco D. Visser, Daan Lenstra, and Hans Blok, ???Light transmission through a subwavelength slit: Waveguiding and optical vortices,??? Phys. Rev. E 67, 36608 (2003).
[CrossRef]

Phys. Rev. Lett.

Y. Takakura, ???Optical Resonance in a Narrow Slit in a Thick Metallic Screen,??? Phys. Rev. Lett. 86, 5601 (2001).
[CrossRef] [PubMed]

J.A. Porto, F.J. García-Vidal, and J.B. Pendry, ???Transmission Resonances on Metallic Gratings with Very Narrow Slits,??? Phys. Rev. Lett. 83, 2845 (1999)
[CrossRef]

L. Martín-Moreno, F.J. García-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, ???Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,??? Phys. Rev. Lett. 86, 1114 (2001)
[CrossRef] [PubMed]

Qing Cao and Philippe Lalanne, ???Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,??? Phys. Rev. Lett. 88, 57403 2002).
[CrossRef]

Rep. Prog. Phys.

C.J. Boukamp, ???Diffraction Theory,??? Rep. Prog. Phys. 17, 35 (1954).
[CrossRef]

Other

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge 1999).

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig.1.
Fig.1.

Schematics of modeled space of a nano-metallic double-slit. Soft source is used for the illumination.

Fig. 2.
Fig. 2.

Intensity distribution of the two-dimensional simulation when the slit width is a=50nm and slit thickness is t=20 nm. (a) Shaded display of TMz mode intensity distribution when the distance between two slits; d=1µm. (b) Line profile of (a). (c) Shaded display of TEz mode intensity distribution when the distance between two slits is d=1µm. (d) Line profile of (c). Solid line represents the line profile just above the metal/air interface, dashed line is the line profile of x=50 nm, and dotted line represents the line profile of x=1µm. The insets of (b) and (d) are the magnifications of dotted and dashed line profiles.

Fig. 3.
Fig. 3.

Interference patterns in near-field and far-field regions when d=1µm and λ=620 nm: (a) Intensity distribution from the entrance of the two slits, (b) Magnified intensity distribution of the region between the two slits after the metal/air interface, (c) contour display of (b), (d) far-field interference pattern.

Fig. 4.
Fig. 4.

Electric field distribution when d=1µm and t=200 nm: (a) amplitude distribution of Ex (x component of electric field), (b) line profile of (a) at the metal/air interface, (c) Ey distribution, and (d) line profile of (c).

Fig. 5.
Fig. 5.

Intensity distribution with various distances between two slits: (a) d=250 nm, (b) d=2 µm, (c) magnified display of the region between two slits when d=2 µm, and (d) magnified display of the region between two slits when d=5 µm.

Fig. 6.
Fig. 6.

Interference patterns with various conditions are presented. (a) and (b) correspond to the results when one of the slits is filled with silicon nitride (n=2) to introduce phase difference resulting in a phase shift of π. (c) Interference pattern with three slits. (d) Interference between slits of different widths.

Fig. 7.
Fig. 7.

Intensity distribution with various slit intervals for a cladding thickness of 50 nm: (a) d=2 µm, (b) magnified display of the region between the two slits.

Fig. 8.
Fig. 8.

Line profiles of the intensity distribution along the y direction when (a) l=20 nm, (b) l=50 nm, (c) l=100 nm, and (d) l=200 nm.

Metrics