Abstract

Submicron-diameter tapered fibres and photonic crystal fibre cores, both of which are silica-air waveguides with low dispersion at 532 nm, were made using a conventional tapering process. In just cm of either waveguide, ns pulses from a low-power 532-nm microchip laser generated a single-mode supercontinuum broad enough to fill the visible spectrum without spreading far beyond it.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. K. Ranka, R. S. Windeler and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  2. T. A. Birks, W. J. Wadsworth and P. St.J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000).
    [CrossRef]
  3. S. Coen, A. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth and P. St.J. Russell, "White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber," Opt. Lett. 26, 1356-1358 (2001).
    [CrossRef]
  4. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana and P. St.J. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres," Opt. Express 12, 299-309 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299."</a>
    [CrossRef] [PubMed]
  5. C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks and P. St.J. Russell, "Octave supercontinuum generated in tapered conventional fibres by a nanosecond 1064 nm laser," presented at Conf. Lasers Electro-Opt. (2004), paper CThC2.
  6. L. Tong, J. Lou and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025."</a>
    [CrossRef] [PubMed]
  7. F. Bilodeau, K. O. Hill, S. Faucher and D. C. Johnson, "Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure," IEEE J. Lightwave Technol. 6, 1476-1482 (1988).
    [CrossRef]
  8. T. A. Birks and Y. W. Li, "The shape of fiber tapers," IEEE J. Lightwave Technol. 10, 432-438 (1992).
    [CrossRef]
  9. L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
    [CrossRef] [PubMed]
  10. J. Bures and R. Ghosh, "Power density of the evanescent field in the vicinity of a tapered fiber," J. Opt. Soc. Am. A 16, 1992-1996 (1999).
    [CrossRef]
  11. T. A. Birks, G. Kakarantzas and P. St.J. Russell, "All-fibre devices based on tapered fibres," presented at Opt. Fiber Commun. Conf. (2004), paper ThK2.
  12. T. Ozeki, T. Ito and T. Tamura, "Tapered section of multimode cladded fibers as mode filters and mode analyzers," Appl. Phys. Lett. 26, 386-388 (1975).
    [CrossRef]
  13. L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler and B. J. Eggleton, "Compact broadband continuum source based on microchip laser pumped microstructured fibre", Electron. Lett. 37, 558-560 (2001).
    [CrossRef]
  14. BlazePhotonics Ltd, fibre NL-3.0-850, <a href="http://www.blazephotonics.com/highly-nonlinear-pcf.html">http://www.blazephotonics.com/highly-nonlinear-pcf.html</a>.
  15. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski and R. S. Windeler, "Soliton self-frequency shift in a short tapered air-silica microstructure fiber," Opt. Lett. 26, 358-360 (2001).
    [CrossRef]
  16. K. Tajima, M. Tateda and M. Ohashi, "Viscosity of GeO2-doped silica glasses," IEEE J. Lightwave Technol. 12, 411-414 (1994).
    [CrossRef]

Appl. Phys. Lett. (1)

T. Ozeki, T. Ito and T. Tamura, "Tapered section of multimode cladded fibers as mode filters and mode analyzers," Appl. Phys. Lett. 26, 386-388 (1975).
[CrossRef]

CLEO 2004 (1)

C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks and P. St.J. Russell, "Octave supercontinuum generated in tapered conventional fibres by a nanosecond 1064 nm laser," presented at Conf. Lasers Electro-Opt. (2004), paper CThC2.

Electron. Lett. (1)

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler and B. J. Eggleton, "Compact broadband continuum source based on microchip laser pumped microstructured fibre", Electron. Lett. 37, 558-560 (2001).
[CrossRef]

IEEE J. Lightwave Technol. (3)

K. Tajima, M. Tateda and M. Ohashi, "Viscosity of GeO2-doped silica glasses," IEEE J. Lightwave Technol. 12, 411-414 (1994).
[CrossRef]

F. Bilodeau, K. O. Hill, S. Faucher and D. C. Johnson, "Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure," IEEE J. Lightwave Technol. 6, 1476-1482 (1988).
[CrossRef]

T. A. Birks and Y. W. Li, "The shape of fiber tapers," IEEE J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature (1)

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

OFC 2004 (1)

T. A. Birks, G. Kakarantzas and P. St.J. Russell, "All-fibre devices based on tapered fibres," presented at Opt. Fiber Commun. Conf. (2004), paper ThK2.

Opt. Express (2)

Opt. Lett. (4)

Other (1)

BlazePhotonics Ltd, fibre NL-3.0-850, <a href="http://www.blazephotonics.com/highly-nonlinear-pcf.html">http://www.blazephotonics.com/highly-nonlinear-pcf.html</a>.

Supplementary Material (1)

» Media 1: MPG (1087 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) (1060 kB) Evolution of the calculated dispersion spectra of taper waists as the diameter (labelled) decreases. The straight lines mark zero dispersion and 532 nm wavelength. (b) A schematic tapered fibre, showing the waist connected to untapered fibre by transitions, and the spread of the mode to fill the fibre in the narrow waist.

Fig. 2.
Fig. 2.

SEM image of a taper waist with a nominal diameter of 620 nm, as predicted by Eq. 1.

Fig. 3.
Fig. 3.

Output far-field patterns from a tapered fibre for (a) low and (b) maximum power. The pattern in (b) was passed through 10-nm bandpass filters at (c) 633, (d) 589 and (e) 450 nm.

Fig. 4.
Fig. 4.

SC spectra generated by taper waists for diameter, length and average laser power of (a) 920 nm, 90 mm and ~3 mW, and (b) 510 nm, 20 mm and ~1.5 mW, respectively. The red curve is for a sample made from Nufern 630-HP fibre instead of Corning SMF-28.

Fig. 5.
Fig. 5.

The variation with input power of the SC spectrum from a waist of diameter 920 nm and length 90 mm.

Fig. 6.
Fig. 6.

PCF cores of diameter 3.1 (untapered), 0.7 and 0.5 µm (left to right; different scales).

Fig. 7.
Fig. 7.

(a) Tapering a PCF to make a submicron core in the waist and facilitate input coupling. (b) Conventional fibre drawing: the drawing force F is uniform, so wider parts of the neck-down region are being drawn under low stress even if the final fibre is at breaking stress.

Fig. 8.
Fig. 8.

Supercontinuum spectra generated by PCF cores of diameter (a) 700 nm and (b) 500 nm. Both were 90 mm long and carried an average laser power of ~1.7 mW.

Tables (1)

Tables Icon

Table 1. Typical loss per unit waist length, for our taper waists with the specified diameter and length

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d n + 1 d n = [ 1 v 2 u 1 + v 2 u ] 1 2 .

Metrics