Abstract

Submicron-diameter tapered fibres and photonic crystal fibre cores, both of which are silica-air waveguides with low dispersion at 532 nm, were made using a conventional tapering process. In just cm of either waveguide, ns pulses from a low-power 532-nm microchip laser generated a single-mode supercontinuum broad enough to fill the visible spectrum without spreading far beyond it.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  2. T. A. Birks, W. J. Wadsworth, and P. St.J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
    [CrossRef]
  3. S. Coen, A. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St.J. Russell, “White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26, 1356–1358 (2001).
    [CrossRef]
  4. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St.J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12, 299–309 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299.
    [CrossRef] [PubMed]
  5. C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St.J. Russell, “Octave supercontinuum generated in tapered conventional fibres by a nanosecond 1064 nm laser,” presented at Conf. Lasers Electro-Opt. (2004), paper CThC2.
  6. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025.
    [CrossRef] [PubMed]
  7. F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure,” IEEE J. Lightwave Technol. 6, 1476–1482 (1988).
    [CrossRef]
  8. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol. 10, 432–438 (1992).
    [CrossRef]
  9. L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
    [CrossRef] [PubMed]
  10. J. Bures and R. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A 16, 1992–1996 (1999).
    [CrossRef]
  11. T. A. Birks, G. Kakarantzas, and P. St.J. Russell, “All-fibre devices based on tapered fibres,” presented at Opt. Fiber Commun. Conf. (2004), paper ThK2.
  12. T. Ozeki, T. Ito, and T. Tamura, “Tapered section of multimode cladded fibers as mode filters and mode analyzers,” Appl. Phys. Lett. 26, 386–388 (1975).
    [CrossRef]
  13. L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre”, Electron. Lett. 37, 558–560 (2001).
    [CrossRef]
  14. BlazePhotonics Ltd, fibre NL-3.0-850, http://www.blazephotonics.com/highly-nonlinear-pcf.html.
  15. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001).
    [CrossRef]
  16. K. Tajima, M. Tateda, and M. Ohashi, “Viscosity of GeO2-doped silica glasses,” IEEE J. Lightwave Technol. 12, 411–414 (1994).
    [CrossRef]

2004 (2)

2003 (1)

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

2001 (3)

2000 (2)

1999 (1)

1994 (1)

K. Tajima, M. Tateda, and M. Ohashi, “Viscosity of GeO2-doped silica glasses,” IEEE J. Lightwave Technol. 12, 411–414 (1994).
[CrossRef]

1992 (1)

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

1988 (1)

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure,” IEEE J. Lightwave Technol. 6, 1476–1482 (1988).
[CrossRef]

1975 (1)

T. Ozeki, T. Ito, and T. Tamura, “Tapered section of multimode cladded fibers as mode filters and mode analyzers,” Appl. Phys. Lett. 26, 386–388 (1975).
[CrossRef]

Ashcom, J. A.

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Biancalana, F.

Bilodeau, F.

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure,” IEEE J. Lightwave Technol. 6, 1476–1482 (1988).
[CrossRef]

Birks, T. A.

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St.J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12, 299–309 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299.
[CrossRef] [PubMed]

T. A. Birks, W. J. Wadsworth, and P. St.J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

T. A. Birks, G. Kakarantzas, and P. St.J. Russell, “All-fibre devices based on tapered fibres,” presented at Opt. Fiber Commun. Conf. (2004), paper ThK2.

C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St.J. Russell, “Octave supercontinuum generated in tapered conventional fibres by a nanosecond 1064 nm laser,” presented at Conf. Lasers Electro-Opt. (2004), paper CThC2.

Bures, J.

Chandalia, J. K.

Chau, A.

Coen, S.

Cordeiro, C. M. B.

C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St.J. Russell, “Octave supercontinuum generated in tapered conventional fibres by a nanosecond 1064 nm laser,” presented at Conf. Lasers Electro-Opt. (2004), paper CThC2.

Dudley, J. M.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre”, Electron. Lett. 37, 558–560 (2001).
[CrossRef]

Eggleton, B. J.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre”, Electron. Lett. 37, 558–560 (2001).
[CrossRef]

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001).
[CrossRef]

Faucher, S.

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure,” IEEE J. Lightwave Technol. 6, 1476–1482 (1988).
[CrossRef]

Gattas, R. G.

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Ghosh, R.

Grossard, N.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre”, Electron. Lett. 37, 558–560 (2001).
[CrossRef]

Harvey, J. D.

He, S.

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Hill, K. O.

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure,” IEEE J. Lightwave Technol. 6, 1476–1482 (1988).
[CrossRef]

Ito, T.

T. Ozeki, T. Ito, and T. Tamura, “Tapered section of multimode cladded fibers as mode filters and mode analyzers,” Appl. Phys. Lett. 26, 386–388 (1975).
[CrossRef]

Johnson, D. C.

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure,” IEEE J. Lightwave Technol. 6, 1476–1482 (1988).
[CrossRef]

Joly, N.

Kakarantzas, G.

T. A. Birks, G. Kakarantzas, and P. St.J. Russell, “All-fibre devices based on tapered fibres,” presented at Opt. Fiber Commun. Conf. (2004), paper ThK2.

Knight, J. C.

Knox, W. H.

Kosinski, S. G.

Leonhardt, R.

Li, Y. W.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

Liu, X.

Lou, J.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025.
[CrossRef] [PubMed]

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Maillotte, H.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre”, Electron. Lett. 37, 558–560 (2001).
[CrossRef]

Maxwell, I.

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025.
[CrossRef] [PubMed]

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Ohashi, M.

K. Tajima, M. Tateda, and M. Ohashi, “Viscosity of GeO2-doped silica glasses,” IEEE J. Lightwave Technol. 12, 411–414 (1994).
[CrossRef]

Ozeki, T.

T. Ozeki, T. Ito, and T. Tamura, “Tapered section of multimode cladded fibers as mode filters and mode analyzers,” Appl. Phys. Lett. 26, 386–388 (1975).
[CrossRef]

Provino, L.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre”, Electron. Lett. 37, 558–560 (2001).
[CrossRef]

Ranka, J. K.

Russell, P. St.J.

Shen, M.

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Stentz, A. J.

Tajima, K.

K. Tajima, M. Tateda, and M. Ohashi, “Viscosity of GeO2-doped silica glasses,” IEEE J. Lightwave Technol. 12, 411–414 (1994).
[CrossRef]

Tamura, T.

T. Ozeki, T. Ito, and T. Tamura, “Tapered section of multimode cladded fibers as mode filters and mode analyzers,” Appl. Phys. Lett. 26, 386–388 (1975).
[CrossRef]

Tateda, M.

K. Tajima, M. Tateda, and M. Ohashi, “Viscosity of GeO2-doped silica glasses,” IEEE J. Lightwave Technol. 12, 411–414 (1994).
[CrossRef]

Tong, L.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025.
[CrossRef] [PubMed]

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Wadsworth, W. J.

Windeler, R. S.

Xu, C.

Appl. Phys. Lett. (1)

T. Ozeki, T. Ito, and T. Tamura, “Tapered section of multimode cladded fibers as mode filters and mode analyzers,” Appl. Phys. Lett. 26, 386–388 (1975).
[CrossRef]

Electron. Lett. (1)

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre”, Electron. Lett. 37, 558–560 (2001).
[CrossRef]

IEEE J. Lightwave Technol. (3)

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure,” IEEE J. Lightwave Technol. 6, 1476–1482 (1988).
[CrossRef]

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

K. Tajima, M. Tateda, and M. Ohashi, “Viscosity of GeO2-doped silica glasses,” IEEE J. Lightwave Technol. 12, 411–414 (1994).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature (1)

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (4)

Other (3)

T. A. Birks, G. Kakarantzas, and P. St.J. Russell, “All-fibre devices based on tapered fibres,” presented at Opt. Fiber Commun. Conf. (2004), paper ThK2.

BlazePhotonics Ltd, fibre NL-3.0-850, http://www.blazephotonics.com/highly-nonlinear-pcf.html.

C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St.J. Russell, “Octave supercontinuum generated in tapered conventional fibres by a nanosecond 1064 nm laser,” presented at Conf. Lasers Electro-Opt. (2004), paper CThC2.

Supplementary Material (1)

» Media 1: MPG (1087 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) (1060 kB) Evolution of the calculated dispersion spectra of taper waists as the diameter (labelled) decreases. The straight lines mark zero dispersion and 532 nm wavelength. (b) A schematic tapered fibre, showing the waist connected to untapered fibre by transitions, and the spread of the mode to fill the fibre in the narrow waist.

Fig. 2.
Fig. 2.

SEM image of a taper waist with a nominal diameter of 620 nm, as predicted by Eq. 1.

Fig. 3.
Fig. 3.

Output far-field patterns from a tapered fibre for (a) low and (b) maximum power. The pattern in (b) was passed through 10-nm bandpass filters at (c) 633, (d) 589 and (e) 450 nm.

Fig. 4.
Fig. 4.

SC spectra generated by taper waists for diameter, length and average laser power of (a) 920 nm, 90 mm and ~3 mW, and (b) 510 nm, 20 mm and ~1.5 mW, respectively. The red curve is for a sample made from Nufern 630-HP fibre instead of Corning SMF-28.

Fig. 5.
Fig. 5.

The variation with input power of the SC spectrum from a waist of diameter 920 nm and length 90 mm.

Fig. 6.
Fig. 6.

PCF cores of diameter 3.1 (untapered), 0.7 and 0.5 µm (left to right; different scales).

Fig. 7.
Fig. 7.

(a) Tapering a PCF to make a submicron core in the waist and facilitate input coupling. (b) Conventional fibre drawing: the drawing force F is uniform, so wider parts of the neck-down region are being drawn under low stress even if the final fibre is at breaking stress.

Fig. 8.
Fig. 8.

Supercontinuum spectra generated by PCF cores of diameter (a) 700 nm and (b) 500 nm. Both were 90 mm long and carried an average laser power of ~1.7 mW.

Tables (1)

Tables Icon

Table 1. Typical loss per unit waist length, for our taper waists with the specified diameter and length

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d n + 1 d n = [ 1 v 2 u 1 + v 2 u ] 1 2 .

Metrics