Abstract

We have observed whispering gallery modes in the inelastic emission from a 9.8 µm polystyrene bead coated with a monolayer of AlexaFluor 488 dye. Using a separate near-IR trapping laser and an Ar+ excitation laser enables us to isolate and study a single dye-coated bead in a colloidal suspension without causing any bead damage.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phy. Rev. 124, 1807–1809 (1961).
    [CrossRef]
  2. S.-X. Qian, J.B. Snow, H.-M. Tzeng, and R.K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
    [CrossRef] [PubMed]
  3. M. Fields, J. Popp, and R.K. Chang, “Nonlinear optics in microspheres,” in Prog. in Optics, E. Wolf, ed. (North Holland Press, Amsterdam, 1999).
  4. S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, and R.A. Logan, “Whispering-gallery mode microdisk lasers,” App. Phy. Lett. 60, 289–291 (1992).
    [CrossRef]
  5. S. Anders, W. Schrenk, E. Gornik, and G. Strasser, “Room-temperature operation of electrically pumped quantum-cascade microcylinder lasers,” App. Phy. Lett. 80, 4094–4096 (2002).
    [CrossRef]
  6. G.D. Chern, H.E. Tureci, A.D. Stone, and R.K. Chang, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” App. Phy. Lett. 83, 1710–1712 (2003).
    [CrossRef]
  7. C. Li, N. Ma, and A. W. Poon, “Waveguide-coupled octagonal microdisk channel add-drop filters,” Opt. Lett. 29, 471–473 (2004).
    [CrossRef] [PubMed]
  8. S. Blair and Y. Chen, “Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities,” App. Opt. 40, 570–582 (2001).
    [CrossRef]
  9. R.W. Boyd and J.E. Heebner, “Nanofabrication of optical structures and devices for photonics and biophotonics,” J. Mod. Opt. 50, 2543–2550 (2003).
    [CrossRef]
  10. F. Vollmer, D. Braun, A. Libchaber, M. Khoshima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phy. Lett. 80, 4057–4059 (2002).
    [CrossRef]
  11. R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structural resonances in the fluorescence spectra from microsphere,” Phy. Rev. Lett. 44, 475–478 (1980).
    [CrossRef]
  12. M. Kuwata-Gonokami, K. Tekeda, H. Yasuda, and K. Ema, “Laser emission from dye-doped polystyrene microsphere,” Jpn. J. Appl. Phys. 31, L99–L101 (1992).
    [CrossRef]
  13. E.E. Meyer, M.F. Islam, W. Lau, and H.D. Ou-Yang, “Complexation kinetics of cyclodextrin with hydrophobic molecules confined in an isolated droplet in water,” Langmuir 16, 5519–5522 (2000).
    [CrossRef]
  14. http://www.probes.com/handbook/figures/0599.html
  15. Diane Domina, Interfacial Dynamics Corporation, Portland, OR 97224 (personal communication, 2004).
  16. S.C. Hill, C.K. Rushforth, R.E. Benner, and P.R. Conwell, “Sizing dielectric spheres and cylinders by aligning measured and computer resonance locations: algorithm for multiple orders,” App. Opt. 24, 2380–2390 (1985).
    [CrossRef]
  17. A.L. Schawlow and C.H. Townes, “Infrared and optical masers,” Phy. Rev. 112, 1940–1949 (1958).
    [CrossRef]
  18. A. Serpenguzel, S. Kucuksenel, and R. K. Chang, “Microdroplet identification and size measurement in sprays with lasing images,” Opt. Express 10, 1118–1132 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1118
    [CrossRef] [PubMed]
  19. Jennifer L. Goodwin and Gerald R. van Hecke, Department of Chemistry, Harvey Mudd College, Claremont, CA 91711 (personal communication, 2003).

2004 (1)

2003 (2)

R.W. Boyd and J.E. Heebner, “Nanofabrication of optical structures and devices for photonics and biophotonics,” J. Mod. Opt. 50, 2543–2550 (2003).
[CrossRef]

G.D. Chern, H.E. Tureci, A.D. Stone, and R.K. Chang, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” App. Phy. Lett. 83, 1710–1712 (2003).
[CrossRef]

2002 (3)

A. Serpenguzel, S. Kucuksenel, and R. K. Chang, “Microdroplet identification and size measurement in sprays with lasing images,” Opt. Express 10, 1118–1132 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1118
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phy. Lett. 80, 4057–4059 (2002).
[CrossRef]

S. Anders, W. Schrenk, E. Gornik, and G. Strasser, “Room-temperature operation of electrically pumped quantum-cascade microcylinder lasers,” App. Phy. Lett. 80, 4094–4096 (2002).
[CrossRef]

2001 (1)

S. Blair and Y. Chen, “Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities,” App. Opt. 40, 570–582 (2001).
[CrossRef]

2000 (1)

E.E. Meyer, M.F. Islam, W. Lau, and H.D. Ou-Yang, “Complexation kinetics of cyclodextrin with hydrophobic molecules confined in an isolated droplet in water,” Langmuir 16, 5519–5522 (2000).
[CrossRef]

1992 (2)

M. Kuwata-Gonokami, K. Tekeda, H. Yasuda, and K. Ema, “Laser emission from dye-doped polystyrene microsphere,” Jpn. J. Appl. Phys. 31, L99–L101 (1992).
[CrossRef]

S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, and R.A. Logan, “Whispering-gallery mode microdisk lasers,” App. Phy. Lett. 60, 289–291 (1992).
[CrossRef]

1986 (1)

S.-X. Qian, J.B. Snow, H.-M. Tzeng, and R.K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef] [PubMed]

1985 (1)

S.C. Hill, C.K. Rushforth, R.E. Benner, and P.R. Conwell, “Sizing dielectric spheres and cylinders by aligning measured and computer resonance locations: algorithm for multiple orders,” App. Opt. 24, 2380–2390 (1985).
[CrossRef]

1980 (1)

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structural resonances in the fluorescence spectra from microsphere,” Phy. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

1961 (1)

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phy. Rev. 124, 1807–1809 (1961).
[CrossRef]

1958 (1)

A.L. Schawlow and C.H. Townes, “Infrared and optical masers,” Phy. Rev. 112, 1940–1949 (1958).
[CrossRef]

Anders, S.

S. Anders, W. Schrenk, E. Gornik, and G. Strasser, “Room-temperature operation of electrically pumped quantum-cascade microcylinder lasers,” App. Phy. Lett. 80, 4094–4096 (2002).
[CrossRef]

Arnold, S.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phy. Lett. 80, 4057–4059 (2002).
[CrossRef]

Barber, P. W.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structural resonances in the fluorescence spectra from microsphere,” Phy. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Benner, R. E.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structural resonances in the fluorescence spectra from microsphere,” Phy. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Benner, R.E.

S.C. Hill, C.K. Rushforth, R.E. Benner, and P.R. Conwell, “Sizing dielectric spheres and cylinders by aligning measured and computer resonance locations: algorithm for multiple orders,” App. Opt. 24, 2380–2390 (1985).
[CrossRef]

Blair, S.

S. Blair and Y. Chen, “Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities,” App. Opt. 40, 570–582 (2001).
[CrossRef]

Bond, W. L.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phy. Rev. 124, 1807–1809 (1961).
[CrossRef]

Boyd, R.W.

R.W. Boyd and J.E. Heebner, “Nanofabrication of optical structures and devices for photonics and biophotonics,” J. Mod. Opt. 50, 2543–2550 (2003).
[CrossRef]

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phy. Lett. 80, 4057–4059 (2002).
[CrossRef]

Chang, R. K.

A. Serpenguzel, S. Kucuksenel, and R. K. Chang, “Microdroplet identification and size measurement in sprays with lasing images,” Opt. Express 10, 1118–1132 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1118
[CrossRef] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structural resonances in the fluorescence spectra from microsphere,” Phy. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Chang, R.K.

G.D. Chern, H.E. Tureci, A.D. Stone, and R.K. Chang, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” App. Phy. Lett. 83, 1710–1712 (2003).
[CrossRef]

S.-X. Qian, J.B. Snow, H.-M. Tzeng, and R.K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef] [PubMed]

M. Fields, J. Popp, and R.K. Chang, “Nonlinear optics in microspheres,” in Prog. in Optics, E. Wolf, ed. (North Holland Press, Amsterdam, 1999).

Chen, Y.

S. Blair and Y. Chen, “Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities,” App. Opt. 40, 570–582 (2001).
[CrossRef]

Chern, G.D.

G.D. Chern, H.E. Tureci, A.D. Stone, and R.K. Chang, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” App. Phy. Lett. 83, 1710–1712 (2003).
[CrossRef]

Conwell, P.R.

S.C. Hill, C.K. Rushforth, R.E. Benner, and P.R. Conwell, “Sizing dielectric spheres and cylinders by aligning measured and computer resonance locations: algorithm for multiple orders,” App. Opt. 24, 2380–2390 (1985).
[CrossRef]

Domina, Diane

Diane Domina, Interfacial Dynamics Corporation, Portland, OR 97224 (personal communication, 2004).

Ema, K.

M. Kuwata-Gonokami, K. Tekeda, H. Yasuda, and K. Ema, “Laser emission from dye-doped polystyrene microsphere,” Jpn. J. Appl. Phys. 31, L99–L101 (1992).
[CrossRef]

Fields, M.

M. Fields, J. Popp, and R.K. Chang, “Nonlinear optics in microspheres,” in Prog. in Optics, E. Wolf, ed. (North Holland Press, Amsterdam, 1999).

Garrett, C. G. B.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phy. Rev. 124, 1807–1809 (1961).
[CrossRef]

Goodwin, Jennifer L.

Jennifer L. Goodwin and Gerald R. van Hecke, Department of Chemistry, Harvey Mudd College, Claremont, CA 91711 (personal communication, 2003).

Gornik, E.

S. Anders, W. Schrenk, E. Gornik, and G. Strasser, “Room-temperature operation of electrically pumped quantum-cascade microcylinder lasers,” App. Phy. Lett. 80, 4094–4096 (2002).
[CrossRef]

Heebner, J.E.

R.W. Boyd and J.E. Heebner, “Nanofabrication of optical structures and devices for photonics and biophotonics,” J. Mod. Opt. 50, 2543–2550 (2003).
[CrossRef]

Hill, S.C.

S.C. Hill, C.K. Rushforth, R.E. Benner, and P.R. Conwell, “Sizing dielectric spheres and cylinders by aligning measured and computer resonance locations: algorithm for multiple orders,” App. Opt. 24, 2380–2390 (1985).
[CrossRef]

Islam, M.F.

E.E. Meyer, M.F. Islam, W. Lau, and H.D. Ou-Yang, “Complexation kinetics of cyclodextrin with hydrophobic molecules confined in an isolated droplet in water,” Langmuir 16, 5519–5522 (2000).
[CrossRef]

Kaiser, W.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phy. Rev. 124, 1807–1809 (1961).
[CrossRef]

Khoshima, M.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phy. Lett. 80, 4057–4059 (2002).
[CrossRef]

Kucuksenel, S.

Kuwata-Gonokami, M.

M. Kuwata-Gonokami, K. Tekeda, H. Yasuda, and K. Ema, “Laser emission from dye-doped polystyrene microsphere,” Jpn. J. Appl. Phys. 31, L99–L101 (1992).
[CrossRef]

Lau, W.

E.E. Meyer, M.F. Islam, W. Lau, and H.D. Ou-Yang, “Complexation kinetics of cyclodextrin with hydrophobic molecules confined in an isolated droplet in water,” Langmuir 16, 5519–5522 (2000).
[CrossRef]

Levi, A.F.J.

S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, and R.A. Logan, “Whispering-gallery mode microdisk lasers,” App. Phy. Lett. 60, 289–291 (1992).
[CrossRef]

Li, C.

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phy. Lett. 80, 4057–4059 (2002).
[CrossRef]

Logan, R.A.

S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, and R.A. Logan, “Whispering-gallery mode microdisk lasers,” App. Phy. Lett. 60, 289–291 (1992).
[CrossRef]

Ma, N.

McCall, S.L.

S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, and R.A. Logan, “Whispering-gallery mode microdisk lasers,” App. Phy. Lett. 60, 289–291 (1992).
[CrossRef]

Meyer, E.E.

E.E. Meyer, M.F. Islam, W. Lau, and H.D. Ou-Yang, “Complexation kinetics of cyclodextrin with hydrophobic molecules confined in an isolated droplet in water,” Langmuir 16, 5519–5522 (2000).
[CrossRef]

Ou-Yang, H.D.

E.E. Meyer, M.F. Islam, W. Lau, and H.D. Ou-Yang, “Complexation kinetics of cyclodextrin with hydrophobic molecules confined in an isolated droplet in water,” Langmuir 16, 5519–5522 (2000).
[CrossRef]

Owen, J. F.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structural resonances in the fluorescence spectra from microsphere,” Phy. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Pearton, S.J.

S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, and R.A. Logan, “Whispering-gallery mode microdisk lasers,” App. Phy. Lett. 60, 289–291 (1992).
[CrossRef]

Poon, A. W.

Popp, J.

M. Fields, J. Popp, and R.K. Chang, “Nonlinear optics in microspheres,” in Prog. in Optics, E. Wolf, ed. (North Holland Press, Amsterdam, 1999).

Qian, S.-X.

S.-X. Qian, J.B. Snow, H.-M. Tzeng, and R.K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef] [PubMed]

Rushforth, C.K.

S.C. Hill, C.K. Rushforth, R.E. Benner, and P.R. Conwell, “Sizing dielectric spheres and cylinders by aligning measured and computer resonance locations: algorithm for multiple orders,” App. Opt. 24, 2380–2390 (1985).
[CrossRef]

Schawlow, A.L.

A.L. Schawlow and C.H. Townes, “Infrared and optical masers,” Phy. Rev. 112, 1940–1949 (1958).
[CrossRef]

Schrenk, W.

S. Anders, W. Schrenk, E. Gornik, and G. Strasser, “Room-temperature operation of electrically pumped quantum-cascade microcylinder lasers,” App. Phy. Lett. 80, 4094–4096 (2002).
[CrossRef]

Serpenguzel, A.

Slusher, R.E.

S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, and R.A. Logan, “Whispering-gallery mode microdisk lasers,” App. Phy. Lett. 60, 289–291 (1992).
[CrossRef]

Snow, J.B.

S.-X. Qian, J.B. Snow, H.-M. Tzeng, and R.K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef] [PubMed]

Stone, A.D.

G.D. Chern, H.E. Tureci, A.D. Stone, and R.K. Chang, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” App. Phy. Lett. 83, 1710–1712 (2003).
[CrossRef]

Strasser, G.

S. Anders, W. Schrenk, E. Gornik, and G. Strasser, “Room-temperature operation of electrically pumped quantum-cascade microcylinder lasers,” App. Phy. Lett. 80, 4094–4096 (2002).
[CrossRef]

Tekeda, K.

M. Kuwata-Gonokami, K. Tekeda, H. Yasuda, and K. Ema, “Laser emission from dye-doped polystyrene microsphere,” Jpn. J. Appl. Phys. 31, L99–L101 (1992).
[CrossRef]

Teraoka, I.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phy. Lett. 80, 4057–4059 (2002).
[CrossRef]

Townes, C.H.

A.L. Schawlow and C.H. Townes, “Infrared and optical masers,” Phy. Rev. 112, 1940–1949 (1958).
[CrossRef]

Tureci, H.E.

G.D. Chern, H.E. Tureci, A.D. Stone, and R.K. Chang, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” App. Phy. Lett. 83, 1710–1712 (2003).
[CrossRef]

Tzeng, H.-M.

S.-X. Qian, J.B. Snow, H.-M. Tzeng, and R.K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef] [PubMed]

van Hecke, Gerald R.

Jennifer L. Goodwin and Gerald R. van Hecke, Department of Chemistry, Harvey Mudd College, Claremont, CA 91711 (personal communication, 2003).

Vollmer, F.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phy. Lett. 80, 4057–4059 (2002).
[CrossRef]

Yasuda, H.

M. Kuwata-Gonokami, K. Tekeda, H. Yasuda, and K. Ema, “Laser emission from dye-doped polystyrene microsphere,” Jpn. J. Appl. Phys. 31, L99–L101 (1992).
[CrossRef]

App. Opt. (2)

S. Blair and Y. Chen, “Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities,” App. Opt. 40, 570–582 (2001).
[CrossRef]

S.C. Hill, C.K. Rushforth, R.E. Benner, and P.R. Conwell, “Sizing dielectric spheres and cylinders by aligning measured and computer resonance locations: algorithm for multiple orders,” App. Opt. 24, 2380–2390 (1985).
[CrossRef]

App. Phy. Lett. (3)

S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, and R.A. Logan, “Whispering-gallery mode microdisk lasers,” App. Phy. Lett. 60, 289–291 (1992).
[CrossRef]

S. Anders, W. Schrenk, E. Gornik, and G. Strasser, “Room-temperature operation of electrically pumped quantum-cascade microcylinder lasers,” App. Phy. Lett. 80, 4094–4096 (2002).
[CrossRef]

G.D. Chern, H.E. Tureci, A.D. Stone, and R.K. Chang, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” App. Phy. Lett. 83, 1710–1712 (2003).
[CrossRef]

Appl. Phy. Lett. (1)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phy. Lett. 80, 4057–4059 (2002).
[CrossRef]

J. Mod. Opt. (1)

R.W. Boyd and J.E. Heebner, “Nanofabrication of optical structures and devices for photonics and biophotonics,” J. Mod. Opt. 50, 2543–2550 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Kuwata-Gonokami, K. Tekeda, H. Yasuda, and K. Ema, “Laser emission from dye-doped polystyrene microsphere,” Jpn. J. Appl. Phys. 31, L99–L101 (1992).
[CrossRef]

Langmuir (1)

E.E. Meyer, M.F. Islam, W. Lau, and H.D. Ou-Yang, “Complexation kinetics of cyclodextrin with hydrophobic molecules confined in an isolated droplet in water,” Langmuir 16, 5519–5522 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phy. Rev. (2)

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phy. Rev. 124, 1807–1809 (1961).
[CrossRef]

A.L. Schawlow and C.H. Townes, “Infrared and optical masers,” Phy. Rev. 112, 1940–1949 (1958).
[CrossRef]

Phy. Rev. Lett. (1)

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structural resonances in the fluorescence spectra from microsphere,” Phy. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Science (1)

S.-X. Qian, J.B. Snow, H.-M. Tzeng, and R.K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef] [PubMed]

Other (4)

M. Fields, J. Popp, and R.K. Chang, “Nonlinear optics in microspheres,” in Prog. in Optics, E. Wolf, ed. (North Holland Press, Amsterdam, 1999).

http://www.probes.com/handbook/figures/0599.html

Diane Domina, Interfacial Dynamics Corporation, Portland, OR 97224 (personal communication, 2004).

Jennifer L. Goodwin and Gerald R. van Hecke, Department of Chemistry, Harvey Mudd College, Claremont, CA 91711 (personal communication, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental Setup

Fig. 2.
Fig. 2.

Coating polystyrene bead

Fig. 3.
Fig. 3.

Normalized inelastic emission spectra from a single A488-coated polystyrene bead. The spectra at Iex=8. 67 W/cm2 and 0.87 W/cm2 have been multiplied by 10, and the spectrum at Iex=0.29 W/cm2 has been multiplied by 3.

Fig. 4.
Fig. 4.

8-second exposures of an A488-coated bead recorded by the digital still camera. The Ar+ excitation laser was positioned at the center of the bead in Fig. 4(a) and at the edge of the bead in Fig. 4(b).

Fig. 5.
Fig. 5.

Inelastic emission spectrum of an A488-coated bead suspended in a propanol-water mixture

Metrics