Abstract

The nonlinear propagation of a partially coherent continuous-wave laser beam in single-mode optical fibers is investigated both theoretically and experimentally, with a special attention to the zero-dispersion wavelength region where modulation instability is expected. Broadband asymmetric spectral broadening is reported experimentally and found in fairly good agreement with a numerical Schrödinger simulation including a phase-diffusion model for the partially coherent beam. This model shows in addition that the underlying spectral broadening mechanism relies not only on modulation instability but also on the generation of high-order soliton-like pulses and dispersive waves. The coherence degradation which results from these ultrafast phenomena is confirmed by autocorrelation measurement.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. P. Agrawal, Nonlinear fiber optics, (Optics and Photonics, 3rd ed., Ac. Press, San Diego, 2001).
  2. D. A. Chestnut, and J. R. Taylor, ???Gain-flattened fiber Raman amplifiers with nonlinearity-broadened pumps,??? Opt. Lett. 28, 2294-2296 (2003).
    [CrossRef] [PubMed]
  3. Tim J. Ellingham, Juan D. Ania- Castañón, O. Shtyrina, Michail P. Fedoruk, Sergei K. Turitsyn, ???CW Raman pump broadening using modulational instability,??? In Nonlinear Guided Waves and their Applications, paper MC42, (March 28-31, Toronto, Canada, 2004).
  4. A. K. Abeeluck, C. Headley, and C. G. Jorgensen, ???A fiber-based, high-power supercontinuum light source,??? In Optical Fiber Communication, paper TuK5, (February 22-27, Los Angeles, California, 2004).
  5. F. Vanholsbeeck, S. Coen, Ph. Emplit, C. Martinelli, and T. Sylvestre, ???Cascaded Raman generation in optical fibers : Influence of chromatic dispersion and Rayleigh back-scattering???, Opt. Lett. 29, 998-1000 (2004).
    [CrossRef] [PubMed]
  6. J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, ???Pulsed and continuous-wave supercontinuum generation in highly nonlinear dispersion-shifted fibers,??? Appl. Phys. B 77, 211-218 (2003).
    [CrossRef]
  7. S. B. Cavalcanti, G. P. Agrawal, and M. Yu, ???Noise amplification in dispersive nonlinear media,??? Phys. Rev. A 51, 4086-4092 (1995).
    [CrossRef] [PubMed]
  8. S. Ryu, ???Change of field spectrum of signal light due to fibre nonlinearities and chromatic dispersion in long-haul coherent systems using in-line optical amplifiers,??? Electron. Lett. 28, 2212 (1992).
    [CrossRef]
  9. M. Lax, ???Classical noise. V. Noise in self-substained oscillators,??? Phys. Rev. 160, 290-307 (1967).
    [CrossRef]
  10. A. V. Husakou and J. Hermann, ???Supercontinuum generation, four-wave mixing and fission of higher-order solitons in photonic crystal fibers,??? J. Opt. Soc. Am. B 19, 2171-2182 (2002).
    [CrossRef]
  11. C. H. Henry, ???Theory of the linewidth of SC Lasers,??? IEEE J. Quant. Electron. 18, 259-264 (1982).
    [CrossRef]
  12. D. Anderson, L. Helczynski-Wolf, M. Lisak, and V. Semenov, ???Features of modulational instability of partially coherent light: Importance of the incoherence spectrum,??? Phys. Rev. E 69, 025601 (2004).
    [CrossRef]
  13. P. K. A. Wai, C. R. Menuyk, H. H. Chen, and Y. C. Lee, ???Soliton at the zero-dispersion wavelength of a single-mode fiber,??? Opt. Lett. 12, 628-630, (1987).
    [CrossRef] [PubMed]
  14. N. Akhmediev and M. Karlsson, ???Cherenkov radiation emitted by solitons in optical fibers,??? Phys. Rev. A 51, 2602-2607 (1995).
    [CrossRef] [PubMed]
  15. G. R. Boyer and X. F. Carlotti, ???Pulse-spreading minimization in single-mode optical fibers,??? Phys. Rev. A 38, 5140-5148 (1988).
    [CrossRef] [PubMed]
  16. J. C. Bouteiller, ???Linewidth predictions for Raman fibre lasers,??? Electron. Lett. 39, 1511-1512 (2003).
    [CrossRef]

Appl. Phys. B (1)

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, ???Pulsed and continuous-wave supercontinuum generation in highly nonlinear dispersion-shifted fibers,??? Appl. Phys. B 77, 211-218 (2003).
[CrossRef]

Electron. Lett. (2)

S. Ryu, ???Change of field spectrum of signal light due to fibre nonlinearities and chromatic dispersion in long-haul coherent systems using in-line optical amplifiers,??? Electron. Lett. 28, 2212 (1992).
[CrossRef]

J. C. Bouteiller, ???Linewidth predictions for Raman fibre lasers,??? Electron. Lett. 39, 1511-1512 (2003).
[CrossRef]

IEEE J. Quant. Electron. (1)

C. H. Henry, ???Theory of the linewidth of SC Lasers,??? IEEE J. Quant. Electron. 18, 259-264 (1982).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nonlinear Guided Waves & Their Appl.2004 (1)

Tim J. Ellingham, Juan D. Ania- Castañón, O. Shtyrina, Michail P. Fedoruk, Sergei K. Turitsyn, ???CW Raman pump broadening using modulational instability,??? In Nonlinear Guided Waves and their Applications, paper MC42, (March 28-31, Toronto, Canada, 2004).

OFC 2004 (1)

A. K. Abeeluck, C. Headley, and C. G. Jorgensen, ???A fiber-based, high-power supercontinuum light source,??? In Optical Fiber Communication, paper TuK5, (February 22-27, Los Angeles, California, 2004).

Opt. Lett. (3)

Phys. Rev. (1)

M. Lax, ???Classical noise. V. Noise in self-substained oscillators,??? Phys. Rev. 160, 290-307 (1967).
[CrossRef]

Phys. Rev. A (3)

S. B. Cavalcanti, G. P. Agrawal, and M. Yu, ???Noise amplification in dispersive nonlinear media,??? Phys. Rev. A 51, 4086-4092 (1995).
[CrossRef] [PubMed]

N. Akhmediev and M. Karlsson, ???Cherenkov radiation emitted by solitons in optical fibers,??? Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

G. R. Boyer and X. F. Carlotti, ???Pulse-spreading minimization in single-mode optical fibers,??? Phys. Rev. A 38, 5140-5148 (1988).
[CrossRef] [PubMed]

Phys. Rev. E (1)

D. Anderson, L. Helczynski-Wolf, M. Lisak, and V. Semenov, ???Features of modulational instability of partially coherent light: Importance of the incoherence spectrum,??? Phys. Rev. E 69, 025601 (2004).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear fiber optics, (Optics and Photonics, 3rd ed., Ac. Press, San Diego, 2001).

Supplementary Material (1)

» Media 1: AVI (1864 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Temporal intensity and (b) power spectrum of a PC laser beam in a single-mode optical fiber at three propagation distances (z=0, red, z=300m, green, and z=3100 m, blue). The entire sequence can be viewed as a movie (avi, 1865 kb). PC wave’s parameters are λ=1555 nm, P=600 mW, Δf=50 GHz. Fiber’s parameters are β 2=-5.5.10-28s2m-1, β 3=1.15.10-40s3m-1, β 4=-2.85.10-55s4m-1, λ0=1549 nm, γ=2W-1km-1, α=4.6.10-5m-1. [Media 1]

Fig. 2.
Fig. 2.

Ouput/Input spectral widths ratio of a PC wave after 3100 m of propagation in a single-mode optical fiber. Solid lines: analytical prediction Eq. (4), Crosses and circles: numerical results.

Fig. 3.
Fig. 3.

(a) Experimental and (b) simulated spectra for increasing pump power. blue : output, from bottom to top (a) P=0.8, 1, 1.4, and 1.8 W and (b) P=0.4, 0.5, 0.7, 0.9 W. Green : normal dispersion P=1.4 W. Red: input at (a) 0.8 W and (b) 0.4 W.

Fig. 4.
Fig. 4.

(a) Experimental and (b) theoretical intensity autocorrelation functions for same increasing power levels as in Fig. 3. Red line: Input. Blue lines: Output.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A z + i β 2 2 2 A t 2 β 3 6 3 A t 3 i β 4 24 4 A t 4 + α 2 A = i γ A 2 A
A P ( t ) = P 0 × exp ( i φ ( t ) )
Γ ( t , z ) = < A P * ( t , z ) A P ( t , z ) >
Δ Ω = 4 ( γ P β 2 ) 1 2
δ ω = 3 β 2 β 3 + 4 β 3 γ P 3 β 2 2 .

Metrics