Abstract

A novel solid-core photonic bandgap (PBG) fiber with a square lattice is proposed. It is proved that light can propagate with the PBG effect in a defect core that is created by downdoping the central silica of the lattice. Compared with those of solid-core honeycomb PBG fibers, both the PBG widths and the bandwidthsof defect modes are increased in square PBG fibers. Simulations show that dispersion of this square solid-core PBG fiber is dominated by material dispersion and influenced by the PBG edges at the bandwidth boundaries.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, ???Single-mode photonic band gap guidance of light in air,??? Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  2. B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, ???Low loss (1.7 dB/km) hollow core photonic bandgap fiber,??? in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D. C., 2004), paper. PDP24.
  3. T. P. Hansen, J. Broeng, and A. Bjarklev, ???Solid-core photonic bandgap fiber with large anomalous dispersion,??? in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D. C., 2003), paper FI6.
  4. Y. Ni, L. An, Y. Xie, L.Zhang, and J. Peng, ???Confinement loss in solid-core photonic band gap fibers,??? Opt. Commun. 235, 305-310 (2004).
    [CrossRef]
  5. P. St. J. Russell, E. Marin, A. Diez, S. Guenneau, and A. B. Movchan, ???Sonic band gaps in PCF preforms: enhancing the interaction of sound and light,??? Opt. Express 11, 2555???2560 (2003), <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2555"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2555</a>
    [CrossRef] [PubMed]
  6. A. H. Bouk, A. Cucinotta, F. Poli, and S. Selleri, ???Dispersion properties of square-lattice photonic crystal fibers,??? Opt. Express 12, 941???946 (2004), http://www.opticsexpress.org. <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-941">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-941.</a>
    [CrossRef] [PubMed]
  7. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, ???Holey optical fibers: an efficient modal model,??? J. Lightwave Technol. 17, 1093-1102 (1999).
    [CrossRef]
  8. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, ???Modeling large air fraction holey optical fiber,??? J. Lightwave Technol. 18, 50-56 (2000).
    [CrossRef]
  9. M. Midrio, M. P. Singh, and C. G. Someda,??? The space filling mode of holey fibers: an analytical vectorial solution,??? J. Lightwave Technol. 18, 1031-1037 (2000).
    [CrossRef]
  10. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N. J., 1995).

J. Lightwave Technol. (3)

OFC 2004 (2)

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, ???Low loss (1.7 dB/km) hollow core photonic bandgap fiber,??? in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D. C., 2004), paper. PDP24.

T. P. Hansen, J. Broeng, and A. Bjarklev, ???Solid-core photonic bandgap fiber with large anomalous dispersion,??? in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D. C., 2003), paper FI6.

Opt. Commun. (1)

Y. Ni, L. An, Y. Xie, L.Zhang, and J. Peng, ???Confinement loss in solid-core photonic band gap fibers,??? Opt. Commun. 235, 305-310 (2004).
[CrossRef]

Opt. Express (2)

Science (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, ???Single-mode photonic band gap guidance of light in air,??? Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Other (1)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N. J., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Solid-core PBG fibers with (a) squarelike and (b) triangularlike lattices. The central red circle is the doped region; black and white areas are silica and air, respectively.

Fig. 2.
Fig. 2.

Typical mode patterns in (a) square and (b) honeycomb solid-core PBG fibers with Λ=2 µm, d/Λ=0.9, and λ=1.55 µm. The units of the axes are micrometers.

Fig. 3.
Fig. 3.

Effective indices (neff=Λ/k) for defect modes in (a) square and (b) honeycomb PBG fibers with d/Λ=0.90. The downdoped defect modes, from top to bottom, are for downdoping levels of 0.5%, 1%, and 1.5%.

Fig. 4.
Fig. 4.

Intensity of displacement fields of Bloch waves of (a) a low band and (b) an up band in square PBG fiber and of (c) a low band and (d) an up band in honeycomb PBG fiber.

Fig. 5.
Fig. 5.

(a) Dispersion of square PBG fibers with Λ=2 m and d/Λ=0.90 for three downdoping levels: 0.5%, 1%, and 1.5%. (b) Comparison of D in square PBG fiber (downdoping level, 1%) of two cases: without material dispersion and with material dispersion.

Fig. 6.
Fig. 6.

Dispersion of square solid-core PBG fibers for d/Λ=0.9, 0.7, 0.5. (a) Λ=1.5 µm, (b) Λ=2 µm, (c) Λ=3 µm.

Fig. 7.
Fig. 7.

Dispersion of square solid-core PBG fibers for several values of Λ with d/Λ=0.90.

Metrics