Abstract

We present an experimental study of a systematic design procedure for achieving high bandwidth wavelength conversion with low ripple in a fiber parametric device with a single tunable pump. We find good agreement with established theory. Fourth order dispersion and fluctuations in the zero-dispersion wavelength have little effect on final conversion bandwidth. Strategies for ripple reduction and pump filtering in a practical device are proposed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Yamamoto, T. Imai, Y. Miyajima, and M. Nakazawa, �??High speed optical path routing by using four-wave mixing and a wavelength router with fiber gratings and optical circulators,�?? Opt. Commun. 120, 245�??248 (1995).
    [CrossRef]
  2. N. Antoniades, S. J. B. Yoo, K. Bala, G. Ellinas, and T. E. Stern, �??An architecture for a wavelength-interchanging cross-connect utilizing parametric wavelength converters,�?? J. Lightwave Technol. 17, 1113�??1125 (1999).
    [CrossRef]
  3. G. Conte, M. Listanti, M. Settembre, and R. Sabella, �??Strategy for protection and restoration of optical paths in WDM backbone networks for next generation Internet infrastructures,�?? J. Lightwave Technol. 20, 1264�??1276 (2002).
    [CrossRef]
  4. N. Chi, L. Xu, L. Christiansen, K. Yvind, J. Zhang, P. Holm-Nielsen, C. Peucheret, C. Zhang, and P. Jeppesen, �??Optical label swapping and packet transmission based on ASK/DPSK orthogonal modulation format in IPover-WDM networks,�?? in Proceedings of the Optical Fiber Communications Conference, Vol. 86 of OSA Proceedings Series, pp. 792�??794 (Optical Society of America, Washington D.C., 2003).
  5. M.Westlund, J. Hansryd, P. A. Andrekson, and S. N. Knudsen, �??Transparent wavelength conversion in fibre with 24nm pump tuning range,�?? Electron. Lett. 38, 85�??86 (2002).
    [CrossRef]
  6. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, �??Polarization-independent one-pump fiber-optical parametric amplifier,�?? IEEE Photon. Technol. Lett. 14, 1506�??1508 (2002).
    [CrossRef]
  7. J. L. Blows and S. E. French, �??Low-noise-figure optical parametric amplifier with a continuous-wave frequency modulated pump,�?? Opt. Lett. 27, 491�??493 (2002).
    [CrossRef]
  8. L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillotte, �??Broadband and flat parametric amplifiers with a multisection dispersion-tailored nonlinear fiber arrangement,�?? J. Opt. Soc. Am. B 20, 1532�??1537 (2003).
    [CrossRef]
  9. E. A. Swanson and J. D. Moores, �??A fiber frequency shifter with broadband, high conversion efficiency, pump and pump ASE cancellation and rapid tunability for WDM optical networks,�?? IEEE Photon. Technol. Lett. 6, 1341�??1343 (1994).
    [CrossRef]
  10. R. W. McKerracher, J. L. Blows, and C. M. de Sterke, �??Wavelength conversion bandwidth in fiber based optical parametric amplifiers,�?? Opt. Express 11, 1002�??1007 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1002">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1002</a>.
    [CrossRef] [PubMed]
  11. M. E. Marhic, N. Kagi, T.-K. Chiang, and L. G. Kazovsky, �??Broadband fiber optical parametric amplifiers,�?? Opt. Lett. 21, 573�??575 (1996).
    [CrossRef] [PubMed]
  12. S. K. Korotky, P. B. Hansen, L. Eskildsen, and J. J. Veselka, �??Efficient phase modulation scheme for suppression of stimulated Brillouin scattering,�?? IOOC 1995 WD2-1, 109�??111 (1995).
  13. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, 1995).
  14. R. H. Stolen and J. E. Bjorkholm, �??Parametric amplification and frequency conversion in optical fibers,�?? IEEE J. Quantum Electron. QE-18, 1062�??1072 (1982).
    [CrossRef]

Electron. Lett. (1)

M.Westlund, J. Hansryd, P. A. Andrekson, and S. N. Knudsen, �??Transparent wavelength conversion in fibre with 24nm pump tuning range,�?? Electron. Lett. 38, 85�??86 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. H. Stolen and J. E. Bjorkholm, �??Parametric amplification and frequency conversion in optical fibers,�?? IEEE J. Quantum Electron. QE-18, 1062�??1072 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, �??Polarization-independent one-pump fiber-optical parametric amplifier,�?? IEEE Photon. Technol. Lett. 14, 1506�??1508 (2002).
[CrossRef]

E. A. Swanson and J. D. Moores, �??A fiber frequency shifter with broadband, high conversion efficiency, pump and pump ASE cancellation and rapid tunability for WDM optical networks,�?? IEEE Photon. Technol. Lett. 6, 1341�??1343 (1994).
[CrossRef]

IOOC (1)

S. K. Korotky, P. B. Hansen, L. Eskildsen, and J. J. Veselka, �??Efficient phase modulation scheme for suppression of stimulated Brillouin scattering,�?? IOOC 1995 WD2-1, 109�??111 (1995).

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

OFC (1)

N. Chi, L. Xu, L. Christiansen, K. Yvind, J. Zhang, P. Holm-Nielsen, C. Peucheret, C. Zhang, and P. Jeppesen, �??Optical label swapping and packet transmission based on ASK/DPSK orthogonal modulation format in IPover-WDM networks,�?? in Proceedings of the Optical Fiber Communications Conference, Vol. 86 of OSA Proceedings Series, pp. 792�??794 (Optical Society of America, Washington D.C., 2003).

Opt. Commun. (1)

T. Yamamoto, T. Imai, Y. Miyajima, and M. Nakazawa, �??High speed optical path routing by using four-wave mixing and a wavelength router with fiber gratings and optical circulators,�?? Opt. Commun. 120, 245�??248 (1995).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, 1995).

Supplementary Material (1)

» Media 1: MOV (1421 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental setup for one pump parametric wavelength conversion. Att.: attenuation. Other abbreviations are explained in the text.

Fig. 2.
Fig. 2.

(a) Animation of OSA traces (blue) showing power in pump (λp ), signal (λs ), converted (λc ), cascaded signal (λcts ) and cascaded idler (λcti ) wavelengths for different input λs . Black crosses trace the power in λc . (b) Conversion efficiency (black) as a function of λs . Pink x indicates the conversion efficiency for the current frame shown in a). Pp =1.68 W and λp =1551 nm. Other experimental conditions are described in Section 2.[1421 KB]

Fig. 3.
Fig. 3.

(a) Contours of ηcmin for different pump powers and wavelengths. Contours have been scaled by Pp1/2 . (b) Theoretical (line) and experimental (points) peak conversion efficiency ηcmax (solid line and crosses), Ripple (dashed line and circles) and conversion bandwidth (dash-dot line and triangles) data as a function of pump power Pp .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ω s = ω p ± K γ P p β 3 ( ω 0 ω p ) ,
Δ λ = λ 0 2 π c ( 4 γ P p β 3 ) 1 3 .
R = ( sinh ( γ P p L ) γ P p L ) 2 ,

Metrics