Abstract

We model the TPA-induced free carrier absorption effect in silicon Raman amplifiers and quantify the conditions under which net gain may be obtained. The achievable Raman gain strongly depends on the free carrier lifetime, propagation loss, and on the effective Raman gain coefficient, through pump-induced broadening.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Claps, D. Dimitropoulos, B. Jalali, �??Stimulated Raman Scattering in Silicon Waveguides,�?? IEE Electron. Lett. 38, 1352-1354 (2002).
    [CrossRef]
  2. R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, "Observation of Raman emission in silicon waveguides at 1.54 µm," Opt. Express 10, 1305-1313 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1305">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1305</a>
    [CrossRef] [PubMed]
  3. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, "Observation of stimulated Raman amplification in silicon waveguides," Opt. Express 11, 1731-1739 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731</a>
    [CrossRef] [PubMed]
  4. T.K. Liang, H.K. Tsang; �??Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,�?? Appl. Phys. Lett. 84(15) 2745-2747 (2004).
    [CrossRef]
  5. M. Dinu, F. Quochi, H. Garcia, �??Third-order nonlinearities in silicon at telecom wavelengths,�?? Appl. Phys. Lett. 82, 2954 (2003).
    [CrossRef]
  6. A. R. Cowan, G. W. Rieger, and J. F. Young, "Nonlinear transmission of 1.5 µm pulses through singlemode silicon-on-insulator waveguide structures," Opt. Express 12, 1611-1621 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1611">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1611</a>
    [CrossRef] [PubMed]
  7. J.H. Yee, H.H.M. Chau; �??Two-Photon indirect transition in GaP crystal,�?? Opt. Comm. 10, 56-58 (1974).
    [CrossRef]
  8. K.W. DeLong, G.I. Stegeman; �??Two-photon absorption as a limitation to all-optical waveguide switching in semiconductors,�?? Appl. Phys. Lett. 57(20) 2063-2064 (1990).
    [CrossRef]
  9. A. Villeneuve, C.C. Yang, G.I. Stegeman, C.N. Ironside, G. Scelsi, R.M. Osgood; �??Nonlinear Absorption in a GaAs Waveguide Just Above Half the Band Gap,�?? IEEE J. Quantum Electron. 30, 1172-1175 (1994).
    [CrossRef]
  10. A.M. Darwish, E.P. Ippen, H.Q. Lee, J.P. Donnelly, S.H. Groves; �??Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss,�?? Appl. Phys. Lett. 69, 737-739 (1996).
    [CrossRef]
  11. Y.-H. Kao, T.J. Xia, M.N. Islam; �??Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current�??, J. Appl. Phys. 86, 4740-4747 (1999).
    [CrossRef]
  12. K. Suto, T. Kimura, T. Saito, J. Nishizawa; �??Raman amplification in GaP-AlxGa1-xP waveguides for light frequency discrimination,�?? IEE Proc.-Optoelectron. 145, 105-108 (1998).
    [CrossRef]
  13. S. Saito, K. Suto, T. Kimura, J.I. Nishizawa; �??80-ps and 4-ns Pulse-Pumped Gains in a GaP-AlGaP Semiconductor Raman Amplifier,�?? IEEE Photon. Technol. Lett.16, 395-397 (2004).
    [CrossRef]
  14. D. Dimitropoulos, B. Houshmand, R. Claps, B. Jalali, �??Coupled-mode theory of Raman effect in silicon-oninsulator waveguides,�?? Opt. Lett. 28, 1954-1956 (2003).
    [CrossRef] [PubMed]
  15. R. A. Soref, B. R. Bennett; �??Electrooptical Effects in Silicon,�?? IEEE J. Quantum Electron. QE-23, 123-129 (1987).
    [CrossRef]
  16. R. J. Bozeat, S. Day, F. Hopper, F.P. Payne, S.W. Roberts, M. Asghari, �??Silicon Based Waveguides,�?? in L. Pavesi, D.J. Lockwood (Eds.) Silicon Photonics, ch. 8, 269-294 (2004).
  17. M.A. Mendicino; �??Comparison of properties of available SOI materials,�?? Properties of Crystalline Silicon, by Robert Hull 18.1 p. 992-1001 (1998).
  18. J.L. Freeouf, S.T. Liu; IEEE Int. SOI conf. proc. Tucson, AZ, USA, 3-5 Oct, 1995 p. 74-5.
  19. J.M. Ralston, R.K. Chang; �??Spontaneous-Raman-Scattering Efficiency and Stimulated Scattering in Silicon,�?? Phys. Rev. B 2, 1858 (1970).
    [CrossRef]
  20. K. Seeger, Semiconductor Physics (An Introduction), (Springer-Verlag, Berlin, 3rd Ed. 1985), ISBN 0-387- 15578-3.
  21. T. Kuwuyama, M. Ishimura, E. Arai; �??Interface recombination velocity of silicon-on-insulator wafers measured by microwave reflectance photoconductivity decay method with electric field,�?? Appl. Phys. Lett. 83, 928-930 (2003).
    [CrossRef]
  22. K.K. Lee, D.R. Lim, L.C. Kimerling, J. Shin, F. Cerrina; �??Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction�?? Opt. Lett. 26, 1888-1890 (2001).
    [CrossRef]

Appl. Phys. Lett. (4)

T.K. Liang, H.K. Tsang; �??Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,�?? Appl. Phys. Lett. 84(15) 2745-2747 (2004).
[CrossRef]

K.W. DeLong, G.I. Stegeman; �??Two-photon absorption as a limitation to all-optical waveguide switching in semiconductors,�?? Appl. Phys. Lett. 57(20) 2063-2064 (1990).
[CrossRef]

A.M. Darwish, E.P. Ippen, H.Q. Lee, J.P. Donnelly, S.H. Groves; �??Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss,�?? Appl. Phys. Lett. 69, 737-739 (1996).
[CrossRef]

T. Kuwuyama, M. Ishimura, E. Arai; �??Interface recombination velocity of silicon-on-insulator wafers measured by microwave reflectance photoconductivity decay method with electric field,�?? Appl. Phys. Lett. 83, 928-930 (2003).
[CrossRef]

Apply. Phys. Lett. (1)

M. Dinu, F. Quochi, H. Garcia, �??Third-order nonlinearities in silicon at telecom wavelengths,�?? Appl. Phys. Lett. 82, 2954 (2003).
[CrossRef]

IEE Electron. Lett. (1)

R. Claps, D. Dimitropoulos, B. Jalali, �??Stimulated Raman Scattering in Silicon Waveguides,�?? IEE Electron. Lett. 38, 1352-1354 (2002).
[CrossRef]

IEE Proc. -Optoelectron (1)

K. Suto, T. Kimura, T. Saito, J. Nishizawa; �??Raman amplification in GaP-AlxGa1-xP waveguides for light frequency discrimination,�?? IEE Proc.-Optoelectron. 145, 105-108 (1998).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. Villeneuve, C.C. Yang, G.I. Stegeman, C.N. Ironside, G. Scelsi, R.M. Osgood; �??Nonlinear Absorption in a GaAs Waveguide Just Above Half the Band Gap,�?? IEEE J. Quantum Electron. 30, 1172-1175 (1994).
[CrossRef]

R. A. Soref, B. R. Bennett; �??Electrooptical Effects in Silicon,�?? IEEE J. Quantum Electron. QE-23, 123-129 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Saito, K. Suto, T. Kimura, J.I. Nishizawa; �??80-ps and 4-ns Pulse-Pumped Gains in a GaP-AlGaP Semiconductor Raman Amplifier,�?? IEEE Photon. Technol. Lett.16, 395-397 (2004).
[CrossRef]

J. Appl. Phys. (1)

Y.-H. Kao, T.J. Xia, M.N. Islam; �??Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current�??, J. Appl. Phys. 86, 4740-4747 (1999).
[CrossRef]

Opt. Comm. (1)

J.H. Yee, H.H.M. Chau; �??Two-Photon indirect transition in GaP crystal,�?? Opt. Comm. 10, 56-58 (1974).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Optics Express (1)

A. R. Cowan, G. W. Rieger, and J. F. Young, "Nonlinear transmission of 1.5 µm pulses through singlemode silicon-on-insulator waveguide structures," Opt. Express 12, 1611-1621 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1611">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1611</a>
[CrossRef] [PubMed]

Phys. Rev. B (1)

J.M. Ralston, R.K. Chang; �??Spontaneous-Raman-Scattering Efficiency and Stimulated Scattering in Silicon,�?? Phys. Rev. B 2, 1858 (1970).
[CrossRef]

Properties of Crystalline Silicon (1)

M.A. Mendicino; �??Comparison of properties of available SOI materials,�?? Properties of Crystalline Silicon, by Robert Hull 18.1 p. 992-1001 (1998).

Semiconductor Physics (1)

K. Seeger, Semiconductor Physics (An Introduction), (Springer-Verlag, Berlin, 3rd Ed. 1985), ISBN 0-387- 15578-3.

Silicon Photonics (1)

R. J. Bozeat, S. Day, F. Hopper, F.P. Payne, S.W. Roberts, M. Asghari, �??Silicon Based Waveguides,�?? in L. Pavesi, D.J. Lockwood (Eds.) Silicon Photonics, ch. 8, 269-294 (2004).

SOI conf. (1)

J.L. Freeouf, S.T. Liu; IEEE Int. SOI conf. proc. Tucson, AZ, USA, 3-5 Oct, 1995 p. 74-5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the SOI waveguides considered for the calculations.

Fig. 2.
Fig. 2.

Effective gain, calculated for different values of effective recombination lifetime.

Fig. 3.
Fig. 3.

SOI rib waveguide, with photo-generated free carriers within the rib section. The carriers diffuse into the slab, effectively reducing the carrier density within the optically active area.

Fig. 4.
Fig. 4.

Effective gain as a function of input pump intensity, for different values of Raman gain coefficient in silicon. Pump-broadening is responsible for the reduction in Raman gain.

Fig. 5.
Fig. 5.

Effective gain curves for different values of linear propagation loss in the waveguide.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d I P d z = ( α P + α P FCA ( z ) ) I P β I P 2 ,
d I S d z = ( α S + α S FCA ( z ) ) I S + ( g R 2 β ) I P I S .
Δ N = β · I p 2 · τ eff ( 2 · h ν ) .
D = ( n + p ) D n · D p n D n + p D p .

Metrics