Abstract

Buried waveguides with nearly symmetrical refractive index profile and high homogeneity were obtained by applying the reverse-proton-exchange technique to MgO doped stoichiometric lithium tantalate, a promising nonlinear material due to its low coercive field and high damage threshold. By characterizing several samples fabricated under different experimental conditions, we identified a fabrication procedure in which the annealing and the reverse-exchange processes are performed at the same temperature, and the diffusion of hydrogen ions towards the substrate is negligible during the burial step. These fabrication conditions are simpler than the conventional ones used for lithium niobate. Accurate empirical laws were found, relating the fabrication conditions to the optical parameters.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Olivares and J. M. Cabrera, “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468–2471 (1993).
    [CrossRef]
  2. V. A. Fedorov and Y. N. Korkishko, “Reverse proton exchange in lithium tantalate crystals,” J. Opt. Commun. 15, 155–158 (1994).
    [CrossRef]
  3. Y. N. Korkishko, V. A. Fedorov, T. Morozova, F. Caccavale, F. Gonella, and F. Segato, “Reverse proton exchange for buried waveguides in LiNbO3,” J. Opt. Soc. Am. A 15, 1838–1842 (1998).
    [CrossRef]
  4. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Phot. Technol. Lett. 11, 653–655 (1999).
    [CrossRef]
  5. K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Phot. Technol. Lett. 12, 654–656 (2000).
    [CrossRef]
  6. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002).
    [CrossRef]
  7. T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3,” Opt. Lett. 25, 651–653 (2000).
    [CrossRef]
  8. D. S. Hum, R. K. Route, M. Katz, G. D. Miller, and M. M. Fejer, “Generation of 5W of 532nm by QPM SHG for 1000hrs in near stoichiometric lithium tantalate,” CMM4, CLEO ’04, San Francisco, USA, 17–21 May 2004.
  9. K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73, 3073–3075 (1998).
    [CrossRef]
  10. K. Kitamura, S. Takekawa, M. Nakamura, and Y. Furukawa, “Optical damage and light-induced absorption in near-stoichiometric LiTaO3 crystal,” in the Technical Digest of CLEO (Baltimore 2001), pp.138–139.
  11. 10 M. J. Li, M. P. De Micheli, D. B. Ostrowsky, and M. Papuchon, “High index low loss waveguides,” Opt. Commun. 62, 17–20 (1987).
    [CrossRef]
  12. 11 P. K. Tien and R. Ulrich, “Theory of prism-film coupler and thin-film light guides”, J. Opt. Soc. Am. 60, 1325–1337 (1970).
    [CrossRef]
  13. 12 G. B. Hocker and W. K. Burns, “Modes in diffused optical waveguides of arbitrary index profile,” IEEE J. Quantum Electron. 11, 270–276 (1975).
    [CrossRef]
  14. M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive Indices in Undoped and MgO-Doped Near-Stoichiometric LiTaO3 Crystals,” Jpn. J. Appl. Phys. 41, 465–467 (2002).
    [CrossRef]
  15. P. J. Matthews, A. R. Mickelson, and S. W. Novak, “Properties of proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 72, 2562–2574 (1992).
    [CrossRef]

2002 (2)

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive Indices in Undoped and MgO-Doped Near-Stoichiometric LiTaO3 Crystals,” Jpn. J. Appl. Phys. 41, 465–467 (2002).
[CrossRef]

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002).
[CrossRef]

2000 (2)

T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3,” Opt. Lett. 25, 651–653 (2000).
[CrossRef]

K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Phot. Technol. Lett. 12, 654–656 (2000).
[CrossRef]

1999 (1)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Phot. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

1998 (2)

Y. N. Korkishko, V. A. Fedorov, T. Morozova, F. Caccavale, F. Gonella, and F. Segato, “Reverse proton exchange for buried waveguides in LiNbO3,” J. Opt. Soc. Am. A 15, 1838–1842 (1998).
[CrossRef]

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73, 3073–3075 (1998).
[CrossRef]

1994 (1)

V. A. Fedorov and Y. N. Korkishko, “Reverse proton exchange in lithium tantalate crystals,” J. Opt. Commun. 15, 155–158 (1994).
[CrossRef]

1993 (1)

J. Olivares and J. M. Cabrera, “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468–2471 (1993).
[CrossRef]

1992 (1)

P. J. Matthews, A. R. Mickelson, and S. W. Novak, “Properties of proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 72, 2562–2574 (1992).
[CrossRef]

1987 (1)

10 M. J. Li, M. P. De Micheli, D. B. Ostrowsky, and M. Papuchon, “High index low loss waveguides,” Opt. Commun. 62, 17–20 (1987).
[CrossRef]

1975 (1)

12 G. B. Hocker and W. K. Burns, “Modes in diffused optical waveguides of arbitrary index profile,” IEEE J. Quantum Electron. 11, 270–276 (1975).
[CrossRef]

1970 (1)

Brener, I.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Phot. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Burns, W. K.

12 G. B. Hocker and W. K. Burns, “Modes in diffused optical waveguides of arbitrary index profile,” IEEE J. Quantum Electron. 11, 270–276 (1975).
[CrossRef]

Cabrera, J. M.

J. Olivares and J. M. Cabrera, “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468–2471 (1993).
[CrossRef]

Caccavale, F.

Chaban, E. E.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Phot. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Chou, M. H.

K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Phot. Technol. Lett. 12, 654–656 (2000).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Phot. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Christman, S. B.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Phot. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

De Micheli, M. P.

10 M. J. Li, M. P. De Micheli, D. B. Ostrowsky, and M. Papuchon, “High index low loss waveguides,” Opt. Commun. 62, 17–20 (1987).
[CrossRef]

Fedorov, V. A.

Fejer, M. M.

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002).
[CrossRef]

K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Phot. Technol. Lett. 12, 654–656 (2000).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Phot. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

D. S. Hum, R. K. Route, M. Katz, G. D. Miller, and M. M. Fejer, “Generation of 5W of 532nm by QPM SHG for 1000hrs in near stoichiometric lithium tantalate,” CMM4, CLEO ’04, San Francisco, USA, 17–21 May 2004.

Fujimura, M.

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002).
[CrossRef]

K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Phot. Technol. Lett. 12, 654–656 (2000).
[CrossRef]

Furukawa, Y.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive Indices in Undoped and MgO-Doped Near-Stoichiometric LiTaO3 Crystals,” Jpn. J. Appl. Phys. 41, 465–467 (2002).
[CrossRef]

T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3,” Opt. Lett. 25, 651–653 (2000).
[CrossRef]

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73, 3073–3075 (1998).
[CrossRef]

K. Kitamura, S. Takekawa, M. Nakamura, and Y. Furukawa, “Optical damage and light-induced absorption in near-stoichiometric LiTaO3 crystal,” in the Technical Digest of CLEO (Baltimore 2001), pp.138–139.

Gonella, F.

Gopalan, V.

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73, 3073–3075 (1998).
[CrossRef]

Hatanaka, T.

Higuchi, S.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive Indices in Undoped and MgO-Doped Near-Stoichiometric LiTaO3 Crystals,” Jpn. J. Appl. Phys. 41, 465–467 (2002).
[CrossRef]

Hocker, 12 G. B.

12 G. B. Hocker and W. K. Burns, “Modes in diffused optical waveguides of arbitrary index profile,” IEEE J. Quantum Electron. 11, 270–276 (1975).
[CrossRef]

Hum, D. S.

D. S. Hum, R. K. Route, M. Katz, G. D. Miller, and M. M. Fejer, “Generation of 5W of 532nm by QPM SHG for 1000hrs in near stoichiometric lithium tantalate,” CMM4, CLEO ’04, San Francisco, USA, 17–21 May 2004.

Ito, H.

Katz, M.

D. S. Hum, R. K. Route, M. Katz, G. D. Miller, and M. M. Fejer, “Generation of 5W of 532nm by QPM SHG for 1000hrs in near stoichiometric lithium tantalate,” CMM4, CLEO ’04, San Francisco, USA, 17–21 May 2004.

Kitamura, K.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive Indices in Undoped and MgO-Doped Near-Stoichiometric LiTaO3 Crystals,” Jpn. J. Appl. Phys. 41, 465–467 (2002).
[CrossRef]

T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3,” Opt. Lett. 25, 651–653 (2000).
[CrossRef]

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73, 3073–3075 (1998).
[CrossRef]

K. Kitamura, S. Takekawa, M. Nakamura, and Y. Furukawa, “Optical damage and light-induced absorption in near-stoichiometric LiTaO3 crystal,” in the Technical Digest of CLEO (Baltimore 2001), pp.138–139.

Korkishko, Y. N.

Kurz, J. R.

Li, 10 M. J.

10 M. J. Li, M. P. De Micheli, D. B. Ostrowsky, and M. Papuchon, “High index low loss waveguides,” Opt. Commun. 62, 17–20 (1987).
[CrossRef]

Matthews, P. J.

P. J. Matthews, A. R. Mickelson, and S. W. Novak, “Properties of proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 72, 2562–2574 (1992).
[CrossRef]

Mickelson, A. R.

P. J. Matthews, A. R. Mickelson, and S. W. Novak, “Properties of proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 72, 2562–2574 (1992).
[CrossRef]

Miller, G. D.

D. S. Hum, R. K. Route, M. Katz, G. D. Miller, and M. M. Fejer, “Generation of 5W of 532nm by QPM SHG for 1000hrs in near stoichiometric lithium tantalate,” CMM4, CLEO ’04, San Francisco, USA, 17–21 May 2004.

Mitchell, T. E.

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73, 3073–3075 (1998).
[CrossRef]

Morozova, T.

Nakamura, K.

Nakamura, M.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive Indices in Undoped and MgO-Doped Near-Stoichiometric LiTaO3 Crystals,” Jpn. J. Appl. Phys. 41, 465–467 (2002).
[CrossRef]

K. Kitamura, S. Takekawa, M. Nakamura, and Y. Furukawa, “Optical damage and light-induced absorption in near-stoichiometric LiTaO3 crystal,” in the Technical Digest of CLEO (Baltimore 2001), pp.138–139.

Niwa, K.

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73, 3073–3075 (1998).
[CrossRef]

Novak, S. W.

P. J. Matthews, A. R. Mickelson, and S. W. Novak, “Properties of proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 72, 2562–2574 (1992).
[CrossRef]

Olivares, J.

J. Olivares and J. M. Cabrera, “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468–2471 (1993).
[CrossRef]

Ostrowsky, D. B.

10 M. J. Li, M. P. De Micheli, D. B. Ostrowsky, and M. Papuchon, “High index low loss waveguides,” Opt. Commun. 62, 17–20 (1987).
[CrossRef]

Papuchon, M.

10 M. J. Li, M. P. De Micheli, D. B. Ostrowsky, and M. Papuchon, “High index low loss waveguides,” Opt. Commun. 62, 17–20 (1987).
[CrossRef]

Parameswaran, K. R.

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002).
[CrossRef]

K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Phot. Technol. Lett. 12, 654–656 (2000).
[CrossRef]

Roussev, R. V.

Route, R. K.

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002).
[CrossRef]

D. S. Hum, R. K. Route, M. Katz, G. D. Miller, and M. M. Fejer, “Generation of 5W of 532nm by QPM SHG for 1000hrs in near stoichiometric lithium tantalate,” CMM4, CLEO ’04, San Francisco, USA, 17–21 May 2004.

Segato, F.

Takekawa, S.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive Indices in Undoped and MgO-Doped Near-Stoichiometric LiTaO3 Crystals,” Jpn. J. Appl. Phys. 41, 465–467 (2002).
[CrossRef]

K. Kitamura, S. Takekawa, M. Nakamura, and Y. Furukawa, “Optical damage and light-induced absorption in near-stoichiometric LiTaO3 crystal,” in the Technical Digest of CLEO (Baltimore 2001), pp.138–139.

Taniuchi, T.

Terabe, K.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive Indices in Undoped and MgO-Doped Near-Stoichiometric LiTaO3 Crystals,” Jpn. J. Appl. Phys. 41, 465–467 (2002).
[CrossRef]

Tien, 11 P. K.

Ulrich, R.

Appl. Phys. Lett. (2)

J. Olivares and J. M. Cabrera, “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468–2471 (1993).
[CrossRef]

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73, 3073–3075 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

12 G. B. Hocker and W. K. Burns, “Modes in diffused optical waveguides of arbitrary index profile,” IEEE J. Quantum Electron. 11, 270–276 (1975).
[CrossRef]

IEEE Phot. Technol. Lett. (2)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Phot. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Phot. Technol. Lett. 12, 654–656 (2000).
[CrossRef]

J. Appl. Phys. (1)

P. J. Matthews, A. R. Mickelson, and S. W. Novak, “Properties of proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 72, 2562–2574 (1992).
[CrossRef]

J. Opt. Commun. (1)

V. A. Fedorov and Y. N. Korkishko, “Reverse proton exchange in lithium tantalate crystals,” J. Opt. Commun. 15, 155–158 (1994).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive Indices in Undoped and MgO-Doped Near-Stoichiometric LiTaO3 Crystals,” Jpn. J. Appl. Phys. 41, 465–467 (2002).
[CrossRef]

Opt. Commun. (1)

10 M. J. Li, M. P. De Micheli, D. B. Ostrowsky, and M. Papuchon, “High index low loss waveguides,” Opt. Commun. 62, 17–20 (1987).
[CrossRef]

Opt. Lett. (2)

Other (2)

K. Kitamura, S. Takekawa, M. Nakamura, and Y. Furukawa, “Optical damage and light-induced absorption in near-stoichiometric LiTaO3 crystal,” in the Technical Digest of CLEO (Baltimore 2001), pp.138–139.

D. S. Hum, R. K. Route, M. Katz, G. D. Miller, and M. M. Fejer, “Generation of 5W of 532nm by QPM SHG for 1000hrs in near stoichiometric lithium tantalate,” CMM4, CLEO ’04, San Francisco, USA, 17–21 May 2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Waveguides depth after proton-exchange as a function of the exchange time tp, and fitting curve according to the Arrhenius law.

Fig. 2.
Fig. 2.

Refractive index profiles of sample #2 after proton-exchange (step-like profile) and after the subsequent annealing steps of 3h and 30h.

Fig. 3.
Fig. 3.

Index profile depth da, equal to dstep+dexp, for different annealing times as determined for the various samples. The fitting curves are all calculated with Eq.2.

Fig. 4.
Fig. 4.

Overall refractive index profiles of samples #2, #3, #4 after 4h (a), 11h (b) and 27h (c) reverse-exchange processes.

Fig. 5.
Fig. 5.

Representation of the refractive index profiles used for describing the annealing (a) and reverse-exchange (b) effects alone.

Fig. 6.
Fig. 6.

Burial depth of samples #2, #3, #4 as a function of the reverse-exchange duration.

Fig. 7.
Fig. 7.

Experimental near field profiles at λ=1.55µm of the fundamental mode of a 8µm wide channel waveguide fabricated with the parameters of sample #4 (a) and of a conventional telecom fiber (b).

Tables (2)

Tables Icon

Table 1. Durations tp of the proton-exchange procedure for the samples used in the experiments.

Tables Icon

Table 2. Experimental neff of sample #4 (reverse-exchanged in two steps lasting 4h and 7h) and sample #5 (reverse-exchanged in only one step of 11h)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d p = 2 D p t p
d a = d p + D a · t d p δ
d step d exp = 1 d p ( α t a + β )
n ( x ) = n es + Δ n m ( 1 exp ( x 2 d r 2 ) )

Metrics