Abstract

We report observation of optical binding between two dielectric particles with dimensions less than the wavelength of the interacting light. The observed dependence of the separation of optically bound particles on the polarization of the trapping beam is in agreement with earlier theoretical predictions.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. M Burns, J.M. Fournier, and J. A Golovchenko, �??Optical Binding,�?? Phys. Rev. Lett. 63, 1233-1236 (1989).
    [CrossRef] [PubMed]
  2. M. M. Burns, J. M. Fournier, and J. A. Golovchenko, �??Optical matter: Crystallization and binding in intense optical fields,�?? Science 249, 749-754 (1990).
    [CrossRef] [PubMed]
  3. F. Depasse, and J. M. Vigoureux, �??Optical binding force between two Rayleigh particles,�?? J. Phys. D: Appl. Phys. 27, 914-919 (1994).
    [CrossRef]
  4. P. C. Chaumet, and M. Nieto- Vesperinas, �??Optical binding of particles with or without the presence of a flat dielectric surface,�?? Phy. Rev. B 64, 035422, 1-8 (2001).
    [CrossRef]
  5. See for example, S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, �??One dimensional optically bound arrays of microscopic particles,�?? Phys. Rev. Lett. 89, 283901, 1-4 (2002).
    [CrossRef]
  6. A. Rohrbach, H. Kress, and E. H. K. Stelzer, �??Three-dimensional tracking of small spheres in focused beams: influence of detection angular aperture,�?? Opt. Lett. 28, 411-413 (2003).
    [CrossRef] [PubMed]
  7. E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Horber, �??Photonic force microscope calibration by thermal noise analysis,�?? Appl. Phys. A. 66, S75-S78 (1998).
    [CrossRef]

Appl. Phys. A (1)

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Horber, �??Photonic force microscope calibration by thermal noise analysis,�?? Appl. Phys. A. 66, S75-S78 (1998).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

F. Depasse, and J. M. Vigoureux, �??Optical binding force between two Rayleigh particles,�?? J. Phys. D: Appl. Phys. 27, 914-919 (1994).
[CrossRef]

Opt. Lett. (1)

Phy. Rev. B (1)

P. C. Chaumet, and M. Nieto- Vesperinas, �??Optical binding of particles with or without the presence of a flat dielectric surface,�?? Phy. Rev. B 64, 035422, 1-8 (2001).
[CrossRef]

Phys. Rev. Lett. (2)

See for example, S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, �??One dimensional optically bound arrays of microscopic particles,�?? Phys. Rev. Lett. 89, 283901, 1-4 (2002).
[CrossRef]

M. M Burns, J.M. Fournier, and J. A Golovchenko, �??Optical Binding,�?? Phys. Rev. Lett. 63, 1233-1236 (1989).
[CrossRef] [PubMed]

Science (1)

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, �??Optical matter: Crystallization and binding in intense optical fields,�?? Science 249, 749-754 (1990).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Line scan of the intensity profile along the major axis of the line tweezers.

Fig. 2.
Fig. 2.

(a) Optical binding force between two Rayleigh particles for three different angles of orientation (θ) of the electric vector of the interacting light with respect to the X-axis, the long axis of the optical tweezers, (b) Interaction potentials for the three different cases.

Fig. 3.
Fig. 3.

(a) Probability distribution of separation between two 300 nm particles for the case when the electric vector of the trapping beam was orthogonal to the long axis of the optical tweezers (θ=90°), (b) Measured histogram of the distance between center of two particles for θ=90°.

Fig. 4.
Fig. 4.

(a) Probability distribution of separation between two 300 nm particles for the case when the electric vector of the trapping beam was parallel to the long axis of the optical tweezers (θ=0°), (b) Measured histogram of the distance between center of two 300 nm particles θ=0°.

Fig. 5.
Fig. 5.

(a) Probability distribution of separation between two 300 nm particles for the case when the electric vector of the trapping beam was parallel to the long axis of the optical tweezers (θ=45°), (b) Measured histogram of the distance between center of two 300 nm particles θ=45°.

Fig. 6.
Fig. 6.

(a) A representative track of two 600 nm particles for 14 sec, (b) Histogram of distance between center of two 600 nm particles for the case when the electric vector of the trapping beam was orthogonal to the long axis of the optical tweezers (θ=90°).

Metrics