Abstract

A theoretical investigation of the possibility of achieving self-similar pulse propagation in a solid-state laser is presented. Limited group-velocity dispersion hinders true self-similar pulse evolution, but an intermediate regime that exhibits some of the characteristic features (and offers some of the benefits) of self-similar propagation can be reached. This regime of operation offers the potential to increase the pulse energy by at least an order of magnitude compared to energies obtained in the usual operation of Kerr-lens mode-locked lasers with anomalous dispersion. Ti:sapphire lasers that generate pulse energies as high as one microjoule and peak powers of ~100 MW should be possible based on this mode of operation.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. E. Spence, P. N. Kean, and W. Sibbett, �??60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,�?? Opt. Lett. 16, 42-44 (1991).
    [CrossRef] [PubMed]
  2. J. Zhou, G. Taft, C. P. Huang, M. M. Murnane, H. C. Kapteyn, and I. P. Christov, �??Pulse evolution in a broad-bandwidth Ti:sapphire laser,�?? Opt. Lett. 19, 1149-1151 (1994).
    [CrossRef] [PubMed]
  3. C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, �??Ultrabroadband femtosecond lasers,�?? IEEE J. Quantum Electron. 30, 1100-1114 (1994).
    [CrossRef]
  4. U. Morgner, F. X. Kartner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, �??Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,�?? Opt. Lett. 24 411-413 (1999).
    [CrossRef]
  5. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, �??Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti:sapphire laser pro-ducing pulses in the two-cycle regime,�?? Opt. Lett. 24, 631-633 (1999).
    [CrossRef]
  6. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, �??77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,�?? Opt. Lett. 18, 1080-1082 (1993).
    [CrossRef] [PubMed]
  7. S. Chen, F. X. Kartner, U. Morgner, S. H. Cho, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, �??Dispersion-managed mode locking,�?? J. Opt. Soc. Am. B 16, 1999-2004 (1999).
    [CrossRef]
  8. C. Jirauschek, F. X. Kartner, U. Morgner, �??Spatiotemporal Gaussian pulse dynamics in Kerr-lens mode-locked lasers,�?? J. Opt. Soc. Am. B 20, 1356-1368 (2003).
    [CrossRef]
  9. M. Ramaswamy, M. Ulman, J. Paye, and J. G. Fujimoto, �??Cavity-dumped femtosecond Kerr-lens mode-locked Ti:Al2O3 laser,�?? Opt. Lett. 18, 1822 (1993).
    [CrossRef] [PubMed]
  10. S. H. Cho, F. X. Kartner, U. Morgner, E. P. Ippen, J. G. Fujimoto, J. E. Cunningham, and W. H. Knox, �??Generation of 90-nJ pulses with a 4-MHz repetition-rate Kerr-lens mode-locked Ti:Al2O3 laser operating with net positive and negative intracavity dispersion,�?? Opt. Lett. 26, 560-562 (2001).
    [CrossRef]
  11. A. M. Kowalevicz, A. Tucay Zare, F. X. Kartner, J. G. Fujimoto, S. Dewald, U. Morgner, V. Scheuer, G. Angelow, �??Generation of 150-nJ pulses from a multiple-pass cavity Kerr-lens mode-locked Ti:Al2O3 oscillator,�?? Opt. Lett. 28, 1597-1599 (2003).
    [CrossRef] [PubMed]
  12. O. E. Martinez, R. L. Fork, and J. P. Gordon, �??Theory of passively mode-locked laser including self-phase modulation and group-velocity dispersion,�?? Opt. Lett. 9, 156-158 (1984).
    [CrossRef] [PubMed]
  13. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, �??Analytic theory of additive pulse and Kerr-lens mode locking,�?? IEEE J. Quantum Electron. 28, 2086-2096 (1992).
    [CrossRef]
  14. B. Proctor, E. Westwig, and F. Wise, �??Operation of a Kerr-lens mode-locked Ti:sapphire laser with positive group-velocity dispersion,�?? Opt. Lett. 18, 1654 (1993).
    [CrossRef] [PubMed]
  15. F. O. Ilday, H. Lim, J. R. Buckley, F. W. Wise, and W. G. Clark, �??Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser,�?? Opt. Lett. 28, 1365-1367 (2003).
    [CrossRef] [PubMed]
  16. F. O. Ilday, J. Buckley, F. W.Wise, and W. G. Clark, �??Self-similar evolution of parabolic pulses in a laser,�?? Phys. Rev. Lett. 92, 213902 (2004
    [CrossRef] [PubMed]
  17. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, �??Self-similar propagation and amplification of parabolic pulses in optical fibers,�?? Phys. Rev. Lett. 84, 6010-6013 (2000).
    [CrossRef] [PubMed]
  18. V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, �??Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,�?? Opt. Lett. 25, 1753-1755 (2000).
    [CrossRef]
  19. A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, �??Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion,�?? Opt. Commun. 206, 171-177 (2002).
    [CrossRef]

IEEE J. Quantum Electron (1)

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, �??Ultrabroadband femtosecond lasers,�?? IEEE J. Quantum Electron. 30, 1100-1114 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, �??Analytic theory of additive pulse and Kerr-lens mode locking,�?? IEEE J. Quantum Electron. 28, 2086-2096 (1992).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, �??Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion,�?? Opt. Commun. 206, 171-177 (2002).
[CrossRef]

Opt. Lett. (12)

O. E. Martinez, R. L. Fork, and J. P. Gordon, �??Theory of passively mode-locked laser including self-phase modulation and group-velocity dispersion,�?? Opt. Lett. 9, 156-158 (1984).
[CrossRef] [PubMed]

D. E. Spence, P. N. Kean, and W. Sibbett, �??60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,�?? Opt. Lett. 16, 42-44 (1991).
[CrossRef] [PubMed]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, �??77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,�?? Opt. Lett. 18, 1080-1082 (1993).
[CrossRef] [PubMed]

B. Proctor, E. Westwig, and F. Wise, �??Operation of a Kerr-lens mode-locked Ti:sapphire laser with positive group-velocity dispersion,�?? Opt. Lett. 18, 1654 (1993).
[CrossRef] [PubMed]

M. Ramaswamy, M. Ulman, J. Paye, and J. G. Fujimoto, �??Cavity-dumped femtosecond Kerr-lens mode-locked Ti:Al2O3 laser,�?? Opt. Lett. 18, 1822 (1993).
[CrossRef] [PubMed]

J. Zhou, G. Taft, C. P. Huang, M. M. Murnane, H. C. Kapteyn, and I. P. Christov, �??Pulse evolution in a broad-bandwidth Ti:sapphire laser,�?? Opt. Lett. 19, 1149-1151 (1994).
[CrossRef] [PubMed]

F. O. Ilday, H. Lim, J. R. Buckley, F. W. Wise, and W. G. Clark, �??Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser,�?? Opt. Lett. 28, 1365-1367 (2003).
[CrossRef] [PubMed]

A. M. Kowalevicz, A. Tucay Zare, F. X. Kartner, J. G. Fujimoto, S. Dewald, U. Morgner, V. Scheuer, G. Angelow, �??Generation of 150-nJ pulses from a multiple-pass cavity Kerr-lens mode-locked Ti:Al2O3 oscillator,�?? Opt. Lett. 28, 1597-1599 (2003).
[CrossRef] [PubMed]

U. Morgner, F. X. Kartner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, �??Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,�?? Opt. Lett. 24 411-413 (1999).
[CrossRef]

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, �??Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti:sapphire laser pro-ducing pulses in the two-cycle regime,�?? Opt. Lett. 24, 631-633 (1999).
[CrossRef]

V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, �??Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,�?? Opt. Lett. 25, 1753-1755 (2000).
[CrossRef]

S. H. Cho, F. X. Kartner, U. Morgner, E. P. Ippen, J. G. Fujimoto, J. E. Cunningham, and W. H. Knox, �??Generation of 90-nJ pulses with a 4-MHz repetition-rate Kerr-lens mode-locked Ti:Al2O3 laser operating with net positive and negative intracavity dispersion,�?? Opt. Lett. 26, 560-562 (2001).
[CrossRef]

Phys. Rev. Lett. (2)

F. O. Ilday, J. Buckley, F. W.Wise, and W. G. Clark, �??Self-similar evolution of parabolic pulses in a laser,�?? Phys. Rev. Lett. 92, 213902 (2004
[CrossRef] [PubMed]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, �??Self-similar propagation and amplification of parabolic pulses in optical fibers,�?? Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of a laser cavity showing the main effects on the dynamics of the pulse generation. The imposition of the periodicity distinguishes between linear and ring cavity configurations. D 1: normal GVD, D 2: anomalous GVD, SPM: self-phase modulation, KL: Kerr lens.

Fig. 2.
Fig. 2.

Simulated output pulse generated with net anomalous GVD, corresponding to laser configuration A. (a) Power spectra, (b) intensity profile and instantaneous frequency.

Fig. 3.
Fig. 3.

Simulated relatively low-energy output pulse generated with net normal GVD of 15 fs2, corresponding to laser configuration B. (a) Power spectra, (b) intensity profile and instantaneous frequency after dechirping.

Fig. 4.
Fig. 4.

Pulse shaping in one round trip: (a) DM-soliton mode (laser configuration A), (b) self-similar evolution mode (laser configuration B).

Fig. 5.
Fig. 5.

Simulated output pulse generated with net normal GVD and high pulse energy, corresponding to laser configuration C. (a) Power spectra, (b) intensity profile and instantaneous frequency after dechirping.

Tables (1)

Tables Icon

Table 1. Set of input parameters corresponding to the numerical simulations for three different configurations A, B, and C. Parameters marked with (*) are outputs, determined by running the simulations. In practice, E pulse is gradually increased from a low value until I peak ~5 MW is obtained.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

z a ( z , t ) = i 1 2 β ( z ) t 2 a ( z , t ) + i γ a ( z , t ) 2 q ( a ( z , t ) ) a ( z , t )
+ g 0 1 + E total E sat 1 Δ ω gain 2 t 2 a ( z , t ) ,

Metrics