Abstract

Complex envelope measurement using coherent linear optical sampling with mode-locked sources is investigated. It is shown that reliable measurement of the phase requires that one of the optical modes of the mode-locked laser be locked to the optical carrier of the data signal to be measured. Carrier-envelope offset (CEO) is found to have negligible effect on the measurement. Measurement errors of the intensity profile and phase depend on the pulsewidth and chirp of the sampling pulses as well as the detuning between the carrier frequencies of the data signal and the center frequency of sampling source.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Flexible terabit/s Nyquist-WDM super-channels using a gain-switched comb source

Joerg Pfeifle, Vidak Vujicic, Regan T. Watts, Philipp C. Schindler, Claudius Weimann, Rui Zhou, Wolfgang Freude, Liam P. Barry, and Christian Koos
Opt. Express 23(2) 724-738 (2015)

Linear semiconductor optical amplifiers for amplification of advanced modulation formats

R. Bonk, G. Huber, T. Vallaitis, S. Koenig, R. Schmogrow, D. Hillerkuss, R. Brenot, F. Lelarge, G.-H. Duan, S. Sygletos, C. Koos, W. Freude, and J. Leuthold
Opt. Express 20(9) 9657-9672 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich, D. Philen, S. Kosinski, K. R. Parameswaran, and M. M. Fejer, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).
    [Crossref]
  2. S. Diez, R. Ludwig, C. Schmidt, U. Feiste, and H. G. Weber, “160-Gb/s optical sampling by gain-transparent four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 11, 1402–1404 (1999).
    [Crossref]
  3. S. Kawanishi, T. Yamamoto, M. Nakawawa, and M. M. Fejer, “High sensitivity waveform measurement with optical sampling using quasi-phasematched mixing in LiNbO3 waveguide,” Electron. Lett. 37, 842–844 (2001).
    [Crossref]
  4. J. Li, J. Hansryd, P. O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300 Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photon. Technol. Lett. 13, 987–989 (2001).
    [Crossref]
  5. S. Nogiwa, H. Ohta, Y. Kawaguchi, and Y. Endo, “Improvement of sensitivity in optical sampling system,” Electron. Lett. 35, 917–918 (1999).
    [Crossref]
  6. J. Li, M. Westlund, H Sunnerud, B. Olsson, M. Karsson, and P. A. Adnrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE. Photon. Technol. Lett. 16, 566–568 (2004).
    [Crossref]
  7. C. Dorrer, C. R. Doerr, I. Kang, R. Ryfand, and P. J. Winzer, “High-sensitivity high-resolution sampling using linear optics and waveguide optical hybrid,” OFC 2004, PDP18.
  8. A. H. Gnauck, S. Chandrasekhar, J. Leuthold, and L. Stulz, “Demonstration of 42.7-Gb/s DPSK receiver with 45 photons/bit sensitivity,” IEEE Photon. Technol. Lett. 15, 99–101 (2003).
    [Crossref]
  9. R. A. Griffin, R. L. Johnstone, R. G. Walker, J. Hall, S. D. Wadsworth, K. Berry, A. C. Carter, and M. J. Wale, “10 Gb/s optical differential quadrature phase shift key (DQPSK) transmission using GaAs/AlGaAs integration,” OFC 2002, FD6-1.
  10. C. Dorrer, J. Leuthold, and C. R. Doerr, “Direct measurement of constellation diagrams of optical sources,” OFC 2004, PDP33.
  11. S. T. Cundiff, “Phase stabilization of ultrashort optical pulses,” J. Phys. D: Appl. Phys. 35. R43–R59 (2002).
    [Crossref]
  12. A. Takada and W. Imajuku, “Linewidth narrowing and optical phase control of mode-locked semiconductor ring laser employing optical injection locking,” IEEE Photon. Technol. Lett. 9, 1328–1330 (1997).
    [Crossref]
  13. R. F. Kalman, J. C. Fan, and L. G. Kazovsky, “Dynamic range of coherent analog fiber-optic links,” J. Lightwave. Technol. 12, 1263–1277 (1994).
    [Crossref]

2004 (1)

J. Li, M. Westlund, H Sunnerud, B. Olsson, M. Karsson, and P. A. Adnrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE. Photon. Technol. Lett. 16, 566–568 (2004).
[Crossref]

2003 (1)

A. H. Gnauck, S. Chandrasekhar, J. Leuthold, and L. Stulz, “Demonstration of 42.7-Gb/s DPSK receiver with 45 photons/bit sensitivity,” IEEE Photon. Technol. Lett. 15, 99–101 (2003).
[Crossref]

2002 (1)

S. T. Cundiff, “Phase stabilization of ultrashort optical pulses,” J. Phys. D: Appl. Phys. 35. R43–R59 (2002).
[Crossref]

2001 (2)

S. Kawanishi, T. Yamamoto, M. Nakawawa, and M. M. Fejer, “High sensitivity waveform measurement with optical sampling using quasi-phasematched mixing in LiNbO3 waveguide,” Electron. Lett. 37, 842–844 (2001).
[Crossref]

J. Li, J. Hansryd, P. O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300 Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photon. Technol. Lett. 13, 987–989 (2001).
[Crossref]

2000 (1)

M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich, D. Philen, S. Kosinski, K. R. Parameswaran, and M. M. Fejer, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).
[Crossref]

1999 (2)

S. Diez, R. Ludwig, C. Schmidt, U. Feiste, and H. G. Weber, “160-Gb/s optical sampling by gain-transparent four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 11, 1402–1404 (1999).
[Crossref]

S. Nogiwa, H. Ohta, Y. Kawaguchi, and Y. Endo, “Improvement of sensitivity in optical sampling system,” Electron. Lett. 35, 917–918 (1999).
[Crossref]

1997 (1)

A. Takada and W. Imajuku, “Linewidth narrowing and optical phase control of mode-locked semiconductor ring laser employing optical injection locking,” IEEE Photon. Technol. Lett. 9, 1328–1330 (1997).
[Crossref]

1994 (1)

R. F. Kalman, J. C. Fan, and L. G. Kazovsky, “Dynamic range of coherent analog fiber-optic links,” J. Lightwave. Technol. 12, 1263–1277 (1994).
[Crossref]

Adnrekson, P. A.

J. Li, M. Westlund, H Sunnerud, B. Olsson, M. Karsson, and P. A. Adnrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE. Photon. Technol. Lett. 16, 566–568 (2004).
[Crossref]

Andrekson, P. A.

J. Li, J. Hansryd, P. O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300 Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photon. Technol. Lett. 13, 987–989 (2001).
[Crossref]

Berry, K.

R. A. Griffin, R. L. Johnstone, R. G. Walker, J. Hall, S. D. Wadsworth, K. Berry, A. C. Carter, and M. J. Wale, “10 Gb/s optical differential quadrature phase shift key (DQPSK) transmission using GaAs/AlGaAs integration,” OFC 2002, FD6-1.

Brener, I.

M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich, D. Philen, S. Kosinski, K. R. Parameswaran, and M. M. Fejer, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).
[Crossref]

Carter, A. C.

R. A. Griffin, R. L. Johnstone, R. G. Walker, J. Hall, S. D. Wadsworth, K. Berry, A. C. Carter, and M. J. Wale, “10 Gb/s optical differential quadrature phase shift key (DQPSK) transmission using GaAs/AlGaAs integration,” OFC 2002, FD6-1.

Chaban, E. E.

M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich, D. Philen, S. Kosinski, K. R. Parameswaran, and M. M. Fejer, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).
[Crossref]

Chandrasekhar, S.

A. H. Gnauck, S. Chandrasekhar, J. Leuthold, and L. Stulz, “Demonstration of 42.7-Gb/s DPSK receiver with 45 photons/bit sensitivity,” IEEE Photon. Technol. Lett. 15, 99–101 (2003).
[Crossref]

Chou, M. H.

M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich, D. Philen, S. Kosinski, K. R. Parameswaran, and M. M. Fejer, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).
[Crossref]

Cundiff, S. T.

S. T. Cundiff, “Phase stabilization of ultrashort optical pulses,” J. Phys. D: Appl. Phys. 35. R43–R59 (2002).
[Crossref]

Diez, S.

S. Diez, R. Ludwig, C. Schmidt, U. Feiste, and H. G. Weber, “160-Gb/s optical sampling by gain-transparent four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 11, 1402–1404 (1999).
[Crossref]

Doerr, C. R.

C. Dorrer, C. R. Doerr, I. Kang, R. Ryfand, and P. J. Winzer, “High-sensitivity high-resolution sampling using linear optics and waveguide optical hybrid,” OFC 2004, PDP18.

C. Dorrer, J. Leuthold, and C. R. Doerr, “Direct measurement of constellation diagrams of optical sources,” OFC 2004, PDP33.

Dorrer, C.

C. Dorrer, J. Leuthold, and C. R. Doerr, “Direct measurement of constellation diagrams of optical sources,” OFC 2004, PDP33.

C. Dorrer, C. R. Doerr, I. Kang, R. Ryfand, and P. J. Winzer, “High-sensitivity high-resolution sampling using linear optics and waveguide optical hybrid,” OFC 2004, PDP18.

Endo, Y.

S. Nogiwa, H. Ohta, Y. Kawaguchi, and Y. Endo, “Improvement of sensitivity in optical sampling system,” Electron. Lett. 35, 917–918 (1999).
[Crossref]

Fan, J. C.

R. F. Kalman, J. C. Fan, and L. G. Kazovsky, “Dynamic range of coherent analog fiber-optic links,” J. Lightwave. Technol. 12, 1263–1277 (1994).
[Crossref]

Feiste, U.

S. Diez, R. Ludwig, C. Schmidt, U. Feiste, and H. G. Weber, “160-Gb/s optical sampling by gain-transparent four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 11, 1402–1404 (1999).
[Crossref]

Fejer, M. M.

S. Kawanishi, T. Yamamoto, M. Nakawawa, and M. M. Fejer, “High sensitivity waveform measurement with optical sampling using quasi-phasematched mixing in LiNbO3 waveguide,” Electron. Lett. 37, 842–844 (2001).
[Crossref]

M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich, D. Philen, S. Kosinski, K. R. Parameswaran, and M. M. Fejer, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).
[Crossref]

Gnauck, A. H.

A. H. Gnauck, S. Chandrasekhar, J. Leuthold, and L. Stulz, “Demonstration of 42.7-Gb/s DPSK receiver with 45 photons/bit sensitivity,” IEEE Photon. Technol. Lett. 15, 99–101 (2003).
[Crossref]

Griffin, R. A.

R. A. Griffin, R. L. Johnstone, R. G. Walker, J. Hall, S. D. Wadsworth, K. Berry, A. C. Carter, and M. J. Wale, “10 Gb/s optical differential quadrature phase shift key (DQPSK) transmission using GaAs/AlGaAs integration,” OFC 2002, FD6-1.

Hall, J.

R. A. Griffin, R. L. Johnstone, R. G. Walker, J. Hall, S. D. Wadsworth, K. Berry, A. C. Carter, and M. J. Wale, “10 Gb/s optical differential quadrature phase shift key (DQPSK) transmission using GaAs/AlGaAs integration,” OFC 2002, FD6-1.

Hansryd, J.

J. Li, J. Hansryd, P. O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300 Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photon. Technol. Lett. 13, 987–989 (2001).
[Crossref]

Hedekvist, P. O.

J. Li, J. Hansryd, P. O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300 Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photon. Technol. Lett. 13, 987–989 (2001).
[Crossref]

Imajuku, W.

A. Takada and W. Imajuku, “Linewidth narrowing and optical phase control of mode-locked semiconductor ring laser employing optical injection locking,” IEEE Photon. Technol. Lett. 9, 1328–1330 (1997).
[Crossref]

Johnstone, R. L.

R. A. Griffin, R. L. Johnstone, R. G. Walker, J. Hall, S. D. Wadsworth, K. Berry, A. C. Carter, and M. J. Wale, “10 Gb/s optical differential quadrature phase shift key (DQPSK) transmission using GaAs/AlGaAs integration,” OFC 2002, FD6-1.

Kalman, R. F.

R. F. Kalman, J. C. Fan, and L. G. Kazovsky, “Dynamic range of coherent analog fiber-optic links,” J. Lightwave. Technol. 12, 1263–1277 (1994).
[Crossref]

Kang, I.

C. Dorrer, C. R. Doerr, I. Kang, R. Ryfand, and P. J. Winzer, “High-sensitivity high-resolution sampling using linear optics and waveguide optical hybrid,” OFC 2004, PDP18.

Karsson, M.

J. Li, M. Westlund, H Sunnerud, B. Olsson, M. Karsson, and P. A. Adnrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE. Photon. Technol. Lett. 16, 566–568 (2004).
[Crossref]

Kawaguchi, Y.

S. Nogiwa, H. Ohta, Y. Kawaguchi, and Y. Endo, “Improvement of sensitivity in optical sampling system,” Electron. Lett. 35, 917–918 (1999).
[Crossref]

Kawanishi, S.

S. Kawanishi, T. Yamamoto, M. Nakawawa, and M. M. Fejer, “High sensitivity waveform measurement with optical sampling using quasi-phasematched mixing in LiNbO3 waveguide,” Electron. Lett. 37, 842–844 (2001).
[Crossref]

Kazovsky, L. G.

R. F. Kalman, J. C. Fan, and L. G. Kazovsky, “Dynamic range of coherent analog fiber-optic links,” J. Lightwave. Technol. 12, 1263–1277 (1994).
[Crossref]

Knudsen, S. N.

J. Li, J. Hansryd, P. O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300 Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photon. Technol. Lett. 13, 987–989 (2001).
[Crossref]

Kosinski, S.

M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich, D. Philen, S. Kosinski, K. R. Parameswaran, and M. M. Fejer, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).
[Crossref]

Lenz, G.

M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich, D. Philen, S. Kosinski, K. R. Parameswaran, and M. M. Fejer, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).
[Crossref]

Leuthold, J.

A. H. Gnauck, S. Chandrasekhar, J. Leuthold, and L. Stulz, “Demonstration of 42.7-Gb/s DPSK receiver with 45 photons/bit sensitivity,” IEEE Photon. Technol. Lett. 15, 99–101 (2003).
[Crossref]

C. Dorrer, J. Leuthold, and C. R. Doerr, “Direct measurement of constellation diagrams of optical sources,” OFC 2004, PDP33.

Li, J.

J. Li, M. Westlund, H Sunnerud, B. Olsson, M. Karsson, and P. A. Adnrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE. Photon. Technol. Lett. 16, 566–568 (2004).
[Crossref]

J. Li, J. Hansryd, P. O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300 Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photon. Technol. Lett. 13, 987–989 (2001).
[Crossref]

Ludwig, R.

S. Diez, R. Ludwig, C. Schmidt, U. Feiste, and H. G. Weber, “160-Gb/s optical sampling by gain-transparent four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 11, 1402–1404 (1999).
[Crossref]

Nakawawa, M.

S. Kawanishi, T. Yamamoto, M. Nakawawa, and M. M. Fejer, “High sensitivity waveform measurement with optical sampling using quasi-phasematched mixing in LiNbO3 waveguide,” Electron. Lett. 37, 842–844 (2001).
[Crossref]

Nogiwa, S.

S. Nogiwa, H. Ohta, Y. Kawaguchi, and Y. Endo, “Improvement of sensitivity in optical sampling system,” Electron. Lett. 35, 917–918 (1999).
[Crossref]

Ohta, H.

S. Nogiwa, H. Ohta, Y. Kawaguchi, and Y. Endo, “Improvement of sensitivity in optical sampling system,” Electron. Lett. 35, 917–918 (1999).
[Crossref]

Olsson, B.

J. Li, M. Westlund, H Sunnerud, B. Olsson, M. Karsson, and P. A. Adnrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE. Photon. Technol. Lett. 16, 566–568 (2004).
[Crossref]

Parameswaran, K. R.

M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich, D. Philen, S. Kosinski, K. R. Parameswaran, and M. M. Fejer, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).
[Crossref]

Philen, D.

M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich, D. Philen, S. Kosinski, K. R. Parameswaran, and M. M. Fejer, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).
[Crossref]

Ryfand, R.

C. Dorrer, C. R. Doerr, I. Kang, R. Ryfand, and P. J. Winzer, “High-sensitivity high-resolution sampling using linear optics and waveguide optical hybrid,” OFC 2004, PDP18.

Schmidt, C.

S. Diez, R. Ludwig, C. Schmidt, U. Feiste, and H. G. Weber, “160-Gb/s optical sampling by gain-transparent four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 11, 1402–1404 (1999).
[Crossref]

Scotti, R.

M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich, D. Philen, S. Kosinski, K. R. Parameswaran, and M. M. Fejer, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).
[Crossref]

Shmulovich, J.

M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich, D. Philen, S. Kosinski, K. R. Parameswaran, and M. M. Fejer, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).
[Crossref]

Stulz, L.

A. H. Gnauck, S. Chandrasekhar, J. Leuthold, and L. Stulz, “Demonstration of 42.7-Gb/s DPSK receiver with 45 photons/bit sensitivity,” IEEE Photon. Technol. Lett. 15, 99–101 (2003).
[Crossref]

Sunnerud, H

J. Li, M. Westlund, H Sunnerud, B. Olsson, M. Karsson, and P. A. Adnrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE. Photon. Technol. Lett. 16, 566–568 (2004).
[Crossref]

Takada, A.

A. Takada and W. Imajuku, “Linewidth narrowing and optical phase control of mode-locked semiconductor ring laser employing optical injection locking,” IEEE Photon. Technol. Lett. 9, 1328–1330 (1997).
[Crossref]

Wadsworth, S. D.

R. A. Griffin, R. L. Johnstone, R. G. Walker, J. Hall, S. D. Wadsworth, K. Berry, A. C. Carter, and M. J. Wale, “10 Gb/s optical differential quadrature phase shift key (DQPSK) transmission using GaAs/AlGaAs integration,” OFC 2002, FD6-1.

Wale, M. J.

R. A. Griffin, R. L. Johnstone, R. G. Walker, J. Hall, S. D. Wadsworth, K. Berry, A. C. Carter, and M. J. Wale, “10 Gb/s optical differential quadrature phase shift key (DQPSK) transmission using GaAs/AlGaAs integration,” OFC 2002, FD6-1.

Walker, R. G.

R. A. Griffin, R. L. Johnstone, R. G. Walker, J. Hall, S. D. Wadsworth, K. Berry, A. C. Carter, and M. J. Wale, “10 Gb/s optical differential quadrature phase shift key (DQPSK) transmission using GaAs/AlGaAs integration,” OFC 2002, FD6-1.

Weber, H. G.

S. Diez, R. Ludwig, C. Schmidt, U. Feiste, and H. G. Weber, “160-Gb/s optical sampling by gain-transparent four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 11, 1402–1404 (1999).
[Crossref]

Westlund, M.

J. Li, M. Westlund, H Sunnerud, B. Olsson, M. Karsson, and P. A. Adnrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE. Photon. Technol. Lett. 16, 566–568 (2004).
[Crossref]

Winzer, P. J.

C. Dorrer, C. R. Doerr, I. Kang, R. Ryfand, and P. J. Winzer, “High-sensitivity high-resolution sampling using linear optics and waveguide optical hybrid,” OFC 2004, PDP18.

Yamamoto, T.

S. Kawanishi, T. Yamamoto, M. Nakawawa, and M. M. Fejer, “High sensitivity waveform measurement with optical sampling using quasi-phasematched mixing in LiNbO3 waveguide,” Electron. Lett. 37, 842–844 (2001).
[Crossref]

Electron. Lett. (2)

S. Kawanishi, T. Yamamoto, M. Nakawawa, and M. M. Fejer, “High sensitivity waveform measurement with optical sampling using quasi-phasematched mixing in LiNbO3 waveguide,” Electron. Lett. 37, 842–844 (2001).
[Crossref]

S. Nogiwa, H. Ohta, Y. Kawaguchi, and Y. Endo, “Improvement of sensitivity in optical sampling system,” Electron. Lett. 35, 917–918 (1999).
[Crossref]

IEEE Photon. Technol. Lett. (5)

A. H. Gnauck, S. Chandrasekhar, J. Leuthold, and L. Stulz, “Demonstration of 42.7-Gb/s DPSK receiver with 45 photons/bit sensitivity,” IEEE Photon. Technol. Lett. 15, 99–101 (2003).
[Crossref]

J. Li, J. Hansryd, P. O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300 Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photon. Technol. Lett. 13, 987–989 (2001).
[Crossref]

M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich, D. Philen, S. Kosinski, K. R. Parameswaran, and M. M. Fejer, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).
[Crossref]

S. Diez, R. Ludwig, C. Schmidt, U. Feiste, and H. G. Weber, “160-Gb/s optical sampling by gain-transparent four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 11, 1402–1404 (1999).
[Crossref]

A. Takada and W. Imajuku, “Linewidth narrowing and optical phase control of mode-locked semiconductor ring laser employing optical injection locking,” IEEE Photon. Technol. Lett. 9, 1328–1330 (1997).
[Crossref]

IEEE. Photon. Technol. Lett. (1)

J. Li, M. Westlund, H Sunnerud, B. Olsson, M. Karsson, and P. A. Adnrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE. Photon. Technol. Lett. 16, 566–568 (2004).
[Crossref]

J. Lightwave. Technol. (1)

R. F. Kalman, J. C. Fan, and L. G. Kazovsky, “Dynamic range of coherent analog fiber-optic links,” J. Lightwave. Technol. 12, 1263–1277 (1994).
[Crossref]

J. Phys. D: Appl. Phys. (1)

S. T. Cundiff, “Phase stabilization of ultrashort optical pulses,” J. Phys. D: Appl. Phys. 35. R43–R59 (2002).
[Crossref]

Other (3)

C. Dorrer, C. R. Doerr, I. Kang, R. Ryfand, and P. J. Winzer, “High-sensitivity high-resolution sampling using linear optics and waveguide optical hybrid,” OFC 2004, PDP18.

R. A. Griffin, R. L. Johnstone, R. G. Walker, J. Hall, S. D. Wadsworth, K. Berry, A. C. Carter, and M. J. Wale, “10 Gb/s optical differential quadrature phase shift key (DQPSK) transmission using GaAs/AlGaAs integration,” OFC 2002, FD6-1.

C. Dorrer, J. Leuthold, and C. R. Doerr, “Direct measurement of constellation diagrams of optical sources,” OFC 2004, PDP33.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the linear optical sampling. Data and sampling pulses have the same polarization. (b) Walk off in the time domain between the sampling pulse (narrow) and data pulse (broad). (c) Schematic of the optical spectra of the data and sampling source: (ωsc is the center frequency of the sampling source, ωd is the optical carrier frequency of the data signal, ΔΩ, called carrier frequency offset, is the offset of the optical carrier of the data signal from the closest mode of the sampling source, and Δω, called carrier frequency detuning, is the detuning of the optical carrier of the data signal from the center frequency of the sampling source).

Fig. 2.
Fig. 2.

Constellation diagram when the data phase is constant, (a) ΔΩ=0 and (b) ΔΩ≠0.

Fig. 3.
Fig. 3.

Numerical simulation of measurement of the envelope profile and phase with linear optical sampling. The sampling pulse bandwidths are 3.769 nm (a) and 1.767 nm (b).

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

E s ( t ) = m a m e j ( ω s , m t + ϕ m ) , with ω s , m = 2 π m T s + α
E s ( t ) = { m a m e j ( ( ω s , m ω sc ) t + ϕ m ) } e j ω sc t = { m a m e j ( 2 π ( m m 0 ) T s t + ϕ m ) } e j ω sc t
E s ( t ) = l ε s ( t l T s ) e j ω sc t
E d ( t ) = l ε d ( t l T d ) e j ( ω d t + ϕ do )
χ ( k ) = ( k 0.5 ) T s ( k + 0.5 ) T s E s ( t ) * E d ( t ) dt
= ( k 0.5 ) T s ( k + 0.5 ) T s ε s ( t k T s ) * ε d ( t k T s + t 0 ( k ) ) e j ( ( ω d ω sc ) t + ϕ do ) dt
χ ( k ) = ( k 0.5 ) T s ( k + 0.5 ) T s ε s ( t k T s ) * ε d ( t k T s + t o ( k ) ) e j ( ( ω s , n ω sc ) t + Δ Ω t + ϕ do ) dt
= e j ϕ do 0.5 T s 0.5 T s ε s ( t ) * ε d ( t + t o ( k ) ) e j [ 2 π ( n m 0 ) T s t ] e j Δ Ω ( t + k T s ) dt
= e j ϕ do e j Δ Ω k T s 0.5 T s 0.5 T s ε s ( t ) * ε d ( t + t o ( k ) ) e j Δ ω t dt
χ ( k ) ε d ( t o ( k ) ) e j ϕ do e j Δ Ω k T s ε s ( t ) * e j Δ ω t dt ( for Δ t s Δ t d )
= ε d ( t o ( k ) ) e j ϕ do ε ˜ s ( Δ ω ) * e j Δ Ω k T s
ε s ( t ) = ε s 0 e ( 1 + iC ) ( 2 ln 2 t 2 Δ t s 2 ) π Δ t s 2 ln 2
Δ t d Δ t d [ 1 + 1 2 ( 1 + C 2 ) ( Δ t s Δ t d ) 2 ] , ( Δ t s 2 Δ t d 2 )
= Δ t d [ 1 + 8 ( ln 2 ) 2 Δ t d 2 Δ ω s 2 ] , ( Δ t s = 4 ln 2 1 + C 2 Δ ω s )
ε s 0 2 Δ ω s e ( 4 ln 2 ) ( Δ ω Δ ω s ) 2 ( Δ t s 2 Δ t d 2 )
Φ ( t o ) 2 ln 2 C Δ t s 2 t o 2 Δ t d 2 Δ ω t o Δ t s 2 ( 1 + C 2 ) Δ t d 2 , ( Δ t s 2 Δ t d 2 , t o < Δ t d 2 )
= 32 ( ln 2 ) 3 C t o 2 t d 2 16 ( ln 2 ) 2 Δ ω t o Δ ω s 2 Δ t d 2
E s ( t ) = l ε s ( t l T s ) e j [ ω sc t + ϕ N ( t ) ]

Metrics