Abstract

We report the design, fabrication, and demonstration of antiresonant reflecting optical (ARROW) waveguides with hollow cores. We describe the design principles to achieve low waveguide loss in both transverse and lateral directions. A novel fabrication process using silicon dioxide and silicon nitride layers as well as sacrificial polyimide core layers was developed. Optical characterization of 3.5µm thick waveguides with air cores was carried out. We demonstrate single-mode propagation through these hollow ARROW waveguides with propagation loss as low as 6.5cm-1 and mode cross sections down to 6.7µm2. Applications of these waveguides to sensing and quantum communication are discussed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, “Holey fiber concept spawns optical-fiber renaissance,” Laser Focus World 38, 77–82 (2002).
  2. Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, and E.L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
    [CrossRef] [PubMed]
  3. B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fib res with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
    [CrossRef] [PubMed]
  4. M.A. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
    [CrossRef]
  5. L.J. Mawst, D. Botez, C. Zmudzinski, and C. Tu, “Design optimization of ARROW-type diode lasers,” IEEE Photon. Technol. Lett. 4, 1204–1206 (1992).
    [CrossRef]
  6. S.G. Patterson, G.S. Petrich, R.J. Ram, and L.A. Kolodiejski, “Continuous-wave room temperature operation of bipolar cascade laser,” Electron. Lett. 35, 395–396 (1999).
    [CrossRef]
  7. M. Cantin, C. Carignan, R. Cote, M.A. Duguay, R. Larose, P. LeBel, and F. Ouellette, “Remotely switched hollow-core antiresonant reflecting optical waveguide,” Opt. Lett. 16, 1738–1740 (1991).
    [CrossRef] [PubMed]
  8. R. Bernini, S. Campopiano, and L. Zeni, “Silicon Micromachined Hollow Optical Waveguides for Sensing Applications,” IEEE J. Sel. Top. Quantum Electron. 8, 106–110 (2002).
    [CrossRef]
  9. H. Schmidt, D. Yin, and A.R. Hawkins, “Integrated optical spectroscopy of low-index gases and liquids using ARROW waveguides,” Technical Digest, Integrated Photonics Research Conference, Washington DC, June 16–18, 2003.
  10. J.L. Archambault, R.J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol.,  11, 416–423 (1993).
    [CrossRef]
  11. P. Yeh, Optical waves in layered media, (Wiley1988) Ch. 5.
  12. W. Huang, R. Shubair, A. Nathan, and Y.L. Chow, “The modal characteristics of ARROW structures,” J. Lightwave Technol.,  10, 1015–1022, (1992).
    [CrossRef]
  13. T. Miura, F. Koyama, and A. Matsutani, “Novel phase-tunable three-dimensional hollow waveguides with variable air core,” IEEE Photon. Tech. Lett. 15, 1240–121242 (2003).
    [CrossRef]
  14. Y. Saito, T. Kanaya, A. Nomura, and T. Kano, “Experimental trial of a hollow-core waveguide used as an absorption cell for concentration measurement of NH3 gas with a CO2 laser,” Opt. Lett. 18, 2150–2152 (1993).
    [CrossRef] [PubMed]
  15. M. Paternostro, M.S. Kim, and B.S. Ham, “Generation of entangled coherent states via XPM in a double EIT scheme,” Phys. Rev. A 67, 023811 (2003).
    [CrossRef]
  16. H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities using electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996).
    [CrossRef] [PubMed]

2003 (2)

T. Miura, F. Koyama, and A. Matsutani, “Novel phase-tunable three-dimensional hollow waveguides with variable air core,” IEEE Photon. Tech. Lett. 15, 1240–121242 (2003).
[CrossRef]

M. Paternostro, M.S. Kim, and B.S. Ham, “Generation of entangled coherent states via XPM in a double EIT scheme,” Phys. Rev. A 67, 023811 (2003).
[CrossRef]

2002 (3)

P. Russell, “Holey fiber concept spawns optical-fiber renaissance,” Laser Focus World 38, 77–82 (2002).

B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fib res with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

R. Bernini, S. Campopiano, and L. Zeni, “Silicon Micromachined Hollow Optical Waveguides for Sensing Applications,” IEEE J. Sel. Top. Quantum Electron. 8, 106–110 (2002).
[CrossRef]

1999 (1)

S.G. Patterson, G.S. Petrich, R.J. Ram, and L.A. Kolodiejski, “Continuous-wave room temperature operation of bipolar cascade laser,” Electron. Lett. 35, 395–396 (1999).
[CrossRef]

1998 (1)

Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, and E.L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

1996 (1)

1993 (2)

1992 (2)

W. Huang, R. Shubair, A. Nathan, and Y.L. Chow, “The modal characteristics of ARROW structures,” J. Lightwave Technol.,  10, 1015–1022, (1992).
[CrossRef]

L.J. Mawst, D. Botez, C. Zmudzinski, and C. Tu, “Design optimization of ARROW-type diode lasers,” IEEE Photon. Technol. Lett. 4, 1204–1206 (1992).
[CrossRef]

1991 (1)

1986 (1)

M.A. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Archambault, J.L.

J.L. Archambault, R.J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol.,  11, 416–423 (1993).
[CrossRef]

Benoit, G.

B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fib res with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

Bernini, R.

R. Bernini, S. Campopiano, and L. Zeni, “Silicon Micromachined Hollow Optical Waveguides for Sensing Applications,” IEEE J. Sel. Top. Quantum Electron. 8, 106–110 (2002).
[CrossRef]

Black, R.J.

J.L. Archambault, R.J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol.,  11, 416–423 (1993).
[CrossRef]

Botez, D.

L.J. Mawst, D. Botez, C. Zmudzinski, and C. Tu, “Design optimization of ARROW-type diode lasers,” IEEE Photon. Technol. Lett. 4, 1204–1206 (1992).
[CrossRef]

Bures, J.

J.L. Archambault, R.J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol.,  11, 416–423 (1993).
[CrossRef]

Campopiano, S.

R. Bernini, S. Campopiano, and L. Zeni, “Silicon Micromachined Hollow Optical Waveguides for Sensing Applications,” IEEE J. Sel. Top. Quantum Electron. 8, 106–110 (2002).
[CrossRef]

Cantin, M.

Carignan, C.

Chen, C.

Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, and E.L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Chow, Y.L.

W. Huang, R. Shubair, A. Nathan, and Y.L. Chow, “The modal characteristics of ARROW structures,” J. Lightwave Technol.,  10, 1015–1022, (1992).
[CrossRef]

Cote, R.

Duguay, M.A.

M. Cantin, C. Carignan, R. Cote, M.A. Duguay, R. Larose, P. LeBel, and F. Ouellette, “Remotely switched hollow-core antiresonant reflecting optical waveguide,” Opt. Lett. 16, 1738–1740 (1991).
[CrossRef] [PubMed]

M.A. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Fan, S.

Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, and E.L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Fink, Y.

B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fib res with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, and E.L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Ham, B.S.

M. Paternostro, M.S. Kim, and B.S. Ham, “Generation of entangled coherent states via XPM in a double EIT scheme,” Phys. Rev. A 67, 023811 (2003).
[CrossRef]

Hart, S.D.

B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fib res with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

Hawkins, A.R.

H. Schmidt, D. Yin, and A.R. Hawkins, “Integrated optical spectroscopy of low-index gases and liquids using ARROW waveguides,” Technical Digest, Integrated Photonics Research Conference, Washington DC, June 16–18, 2003.

Huang, W.

W. Huang, R. Shubair, A. Nathan, and Y.L. Chow, “The modal characteristics of ARROW structures,” J. Lightwave Technol.,  10, 1015–1022, (1992).
[CrossRef]

Imamoglu, A.

Joannopoulos, J.D.

B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fib res with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, and E.L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Kanaya, T.

Kano, T.

Kim, M.S.

M. Paternostro, M.S. Kim, and B.S. Ham, “Generation of entangled coherent states via XPM in a double EIT scheme,” Phys. Rev. A 67, 023811 (2003).
[CrossRef]

Koch, T.

M.A. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Kokubun, Y.

M.A. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Kolodiejski, L.A.

S.G. Patterson, G.S. Petrich, R.J. Ram, and L.A. Kolodiejski, “Continuous-wave room temperature operation of bipolar cascade laser,” Electron. Lett. 35, 395–396 (1999).
[CrossRef]

Koyama, F.

T. Miura, F. Koyama, and A. Matsutani, “Novel phase-tunable three-dimensional hollow waveguides with variable air core,” IEEE Photon. Tech. Lett. 15, 1240–121242 (2003).
[CrossRef]

Lacroix, S.

J.L. Archambault, R.J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol.,  11, 416–423 (1993).
[CrossRef]

Larose, R.

LeBel, P.

Matsutani, A.

T. Miura, F. Koyama, and A. Matsutani, “Novel phase-tunable three-dimensional hollow waveguides with variable air core,” IEEE Photon. Tech. Lett. 15, 1240–121242 (2003).
[CrossRef]

Mawst, L.J.

L.J. Mawst, D. Botez, C. Zmudzinski, and C. Tu, “Design optimization of ARROW-type diode lasers,” IEEE Photon. Technol. Lett. 4, 1204–1206 (1992).
[CrossRef]

Michel, J.

Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, and E.L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Miura, T.

T. Miura, F. Koyama, and A. Matsutani, “Novel phase-tunable three-dimensional hollow waveguides with variable air core,” IEEE Photon. Tech. Lett. 15, 1240–121242 (2003).
[CrossRef]

Nathan, A.

W. Huang, R. Shubair, A. Nathan, and Y.L. Chow, “The modal characteristics of ARROW structures,” J. Lightwave Technol.,  10, 1015–1022, (1992).
[CrossRef]

Nomura, A.

Ouellette, F.

Paternostro, M.

M. Paternostro, M.S. Kim, and B.S. Ham, “Generation of entangled coherent states via XPM in a double EIT scheme,” Phys. Rev. A 67, 023811 (2003).
[CrossRef]

Patterson, S.G.

S.G. Patterson, G.S. Petrich, R.J. Ram, and L.A. Kolodiejski, “Continuous-wave room temperature operation of bipolar cascade laser,” Electron. Lett. 35, 395–396 (1999).
[CrossRef]

Petrich, G.S.

S.G. Patterson, G.S. Petrich, R.J. Ram, and L.A. Kolodiejski, “Continuous-wave room temperature operation of bipolar cascade laser,” Electron. Lett. 35, 395–396 (1999).
[CrossRef]

Pfeiffer, L.

M.A. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Ram, R.J.

S.G. Patterson, G.S. Petrich, R.J. Ram, and L.A. Kolodiejski, “Continuous-wave room temperature operation of bipolar cascade laser,” Electron. Lett. 35, 395–396 (1999).
[CrossRef]

Russell, P.

P. Russell, “Holey fiber concept spawns optical-fiber renaissance,” Laser Focus World 38, 77–82 (2002).

Saito, Y.

Schmidt, H.

H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities using electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996).
[CrossRef] [PubMed]

H. Schmidt, D. Yin, and A.R. Hawkins, “Integrated optical spectroscopy of low-index gases and liquids using ARROW waveguides,” Technical Digest, Integrated Photonics Research Conference, Washington DC, June 16–18, 2003.

Shubair, R.

W. Huang, R. Shubair, A. Nathan, and Y.L. Chow, “The modal characteristics of ARROW structures,” J. Lightwave Technol.,  10, 1015–1022, (1992).
[CrossRef]

Temelkuran, B.

B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fib res with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

Thomas, E.L.

Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, and E.L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Tu, C.

L.J. Mawst, D. Botez, C. Zmudzinski, and C. Tu, “Design optimization of ARROW-type diode lasers,” IEEE Photon. Technol. Lett. 4, 1204–1206 (1992).
[CrossRef]

Winn, J.N.

Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, and E.L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Yeh, P.

P. Yeh, Optical waves in layered media, (Wiley1988) Ch. 5.

Yin, D.

H. Schmidt, D. Yin, and A.R. Hawkins, “Integrated optical spectroscopy of low-index gases and liquids using ARROW waveguides,” Technical Digest, Integrated Photonics Research Conference, Washington DC, June 16–18, 2003.

Zeni, L.

R. Bernini, S. Campopiano, and L. Zeni, “Silicon Micromachined Hollow Optical Waveguides for Sensing Applications,” IEEE J. Sel. Top. Quantum Electron. 8, 106–110 (2002).
[CrossRef]

Zmudzinski, C.

L.J. Mawst, D. Botez, C. Zmudzinski, and C. Tu, “Design optimization of ARROW-type diode lasers,” IEEE Photon. Technol. Lett. 4, 1204–1206 (1992).
[CrossRef]

Appl. Phys. Lett. (1)

M.A. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Electron. Lett. (1)

S.G. Patterson, G.S. Petrich, R.J. Ram, and L.A. Kolodiejski, “Continuous-wave room temperature operation of bipolar cascade laser,” Electron. Lett. 35, 395–396 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Bernini, S. Campopiano, and L. Zeni, “Silicon Micromachined Hollow Optical Waveguides for Sensing Applications,” IEEE J. Sel. Top. Quantum Electron. 8, 106–110 (2002).
[CrossRef]

IEEE Photon. Tech. Lett. (1)

T. Miura, F. Koyama, and A. Matsutani, “Novel phase-tunable three-dimensional hollow waveguides with variable air core,” IEEE Photon. Tech. Lett. 15, 1240–121242 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L.J. Mawst, D. Botez, C. Zmudzinski, and C. Tu, “Design optimization of ARROW-type diode lasers,” IEEE Photon. Technol. Lett. 4, 1204–1206 (1992).
[CrossRef]

J. Lightwave Technol. (2)

J.L. Archambault, R.J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol.,  11, 416–423 (1993).
[CrossRef]

W. Huang, R. Shubair, A. Nathan, and Y.L. Chow, “The modal characteristics of ARROW structures,” J. Lightwave Technol.,  10, 1015–1022, (1992).
[CrossRef]

Laser Focus World (1)

P. Russell, “Holey fiber concept spawns optical-fiber renaissance,” Laser Focus World 38, 77–82 (2002).

Nature (1)

B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fib res with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. A (1)

M. Paternostro, M.S. Kim, and B.S. Ham, “Generation of entangled coherent states via XPM in a double EIT scheme,” Phys. Rev. A 67, 023811 (2003).
[CrossRef]

Science (1)

Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, and E.L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Other (2)

P. Yeh, Optical waves in layered media, (Wiley1988) Ch. 5.

H. Schmidt, D. Yin, and A.R. Hawkins, “Integrated optical spectroscopy of low-index gases and liquids using ARROW waveguides,” Technical Digest, Integrated Photonics Research Conference, Washington DC, June 16–18, 2003.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Transverse ARROW waveguide structure. (b) Transverse TE mode loss for various waveguide types. Black: no ARROW confinement, red: SiN/air confinement, blue: SiO2/SiN confinement (1, 2, and 3 periods). Dashed line: thickness of fabricated structure.

Fig. 2.
Fig. 2.

Waveguide cross sections for 3D confinement. Left: Lateral confinement by ARROW layers. Right: Lateral confinement by effective index guiding due to ridge in top layer.

Fig. 3.
Fig. 3.

SEM image of fabricated hollow-core ARROW waveguide. The core dimensions are 12 µm by 3.5µm with a 0.57µm high and 5µm wide ridge on top.

Fig. 4.
Fig. 4.

(a) Output facet image of mode propagating in hollow ARROW waveguide. Black lines: Outline of sample for clarity. (b) Intensity mode profile (near-field).

Fig. 5.
Fig. 5.

Comparison of observed transverse (a) and lateral (b) mode profiles (circles) with theoretical calculation (lines).

Fig. 6.
Fig. 6.

Waveguide loss versus sample length (3.5×24µm core): Circles: Experiment; solid line: exponential fit; dashed line: loss calculation including higher order modes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d i = λ 4 n i ( 2 N + 1 ) [ 1 n c 2 n i 2 + λ 2 4 n i 2 d c 2 ] 0.5
I o u t β 1 e α 1 L + β 3 e α 3 L + β 5 e α 5 L

Metrics