Abstract

We report the design, fabrication, and demonstration of antiresonant reflecting optical (ARROW) waveguides with hollow cores. We describe the design principles to achieve low waveguide loss in both transverse and lateral directions. A novel fabrication process using silicon dioxide and silicon nitride layers as well as sacrificial polyimide core layers was developed. Optical characterization of 3.5μm thick waveguides with air cores was carried out. We demonstrate single-mode propagation through these hollow ARROW waveguides with propagation loss as low as 6.5cm-1 and mode cross sections down to 6.7μm2. Applications of these waveguides to sensing and quantum communication are discussed.

© 2004 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. P. Russell, �??Holey fiber concept spawns optical-fiber renaissance,�?? Laser Focus World 38, 77-82 (2002).
  2. Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, and E.L. Thomas, �??A dielectric omnidirectional reflector,�?? Science 282, 1679-1682 (1998).
    [CrossRef]
  3. B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, and Y. Fink, �??Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,�?? Nature 420, 650-653 (2002).
    [CrossRef]
  4. M.A. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, �??Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,�?? Appl. Phys. Lett. 49, 13-15 (1986).
    [CrossRef]
  5. L.J. Mawst, D. Botez, C. Zmudzinski, and C. Tu, �??Design optimization of ARROW-type diode lasers,�?? IEEE Photon. Technol. Lett. 4, 1204-1206 (1992).
    [CrossRef]
  6. S.G. Patterson, G.S. Petrich, R.J. Ram, and L.A. Kolodiejski, �??Continuous-wave room temperature operation of bipolar cascade laser,�?? Electron. Lett. 35, 395-396 (1999).
    [CrossRef]
  7. M. Cantin, C. Carignan, R. Cote, M.A. Duguay, R. Larose, P. LeBel, and F. Ouellette, �??Remotely switched hollow-core antiresonant reflecting optical waveguide,�?? Opt. Lett. 16, 1738-1740 (1991).
  8. R. Bernini, S. Campopiano, and L. Zeni, �??Silicon Micromachined Hollow Optical Waveguides for Sensing Applications,�?? IEEE J. Sel. Top. Quantum Electron. 8, 106-110 (2002).
  9. H. Schmidt, D. Yin, and A.R. Hawkins, "Integrated optical spectroscopy of low-index gases and liquids using ARROW waveguides," Technical Digest, Integrated Photonics Research Conference, Washington DC, June 16-18, 2003.
  10. J.L. Archambault, R.J. Black, S. Lacroix, and J. Bures, �??Loss calculations for antiresonant waveguides,�?? J. Lightwave Technol., 11, 416-423 (1993).
    [CrossRef]
  11. P. Yeh, Optical waves in layered media, (Wiley 1988) Ch. 5.
  12. W. Huang, R. Shubair, A. Nathan, and Y.L. Chow, �??The modal characteristics of ARROW structures,�?? J. Lightwave Technol., 10, 1015-1022, (1992).
    [CrossRef]
  13. T. Miura, F. Koyama, and A. Matsutani, �??Novel phase-tunable three-dimensional hollow waveguides with variable air core,�?? IEEE Photon. Tech. Lett. 15, 1240-121242 (2003).
    [CrossRef]
  14. Y. Saito, T. Kanaya, A. Nomura, and T. Kano, �??Experimental trial of a hollow-core waveguide used as an absorption cell for concentration measurement of NH3 gas with a CO2 laser,�?? Opt. Lett. 18, 2150-2152 (1993).
  15. M. Paternostro, M.S. Kim, and B.S. Ham, �??Generation of entangled coherent states via XPM in a double EIT scheme,�?? Phys. Rev. A 67, 023811 (2003).
    [CrossRef]
  16. H. Schmidt and A. Imamoglu, �??Giant Kerr nonlinearities using electromagnetically induced transparency,�?? Opt. Lett. 21, 1936-1938 (1996).

Appl. Phys. Lett. (1)

M.A. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, �??Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,�?? Appl. Phys. Lett. 49, 13-15 (1986).
[CrossRef]

Electron. Lett. (1)

S.G. Patterson, G.S. Petrich, R.J. Ram, and L.A. Kolodiejski, �??Continuous-wave room temperature operation of bipolar cascade laser,�?? Electron. Lett. 35, 395-396 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Bernini, S. Campopiano, and L. Zeni, �??Silicon Micromachined Hollow Optical Waveguides for Sensing Applications,�?? IEEE J. Sel. Top. Quantum Electron. 8, 106-110 (2002).

IEEE Photon. Tech. Lett. (1)

T. Miura, F. Koyama, and A. Matsutani, �??Novel phase-tunable three-dimensional hollow waveguides with variable air core,�?? IEEE Photon. Tech. Lett. 15, 1240-121242 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L.J. Mawst, D. Botez, C. Zmudzinski, and C. Tu, �??Design optimization of ARROW-type diode lasers,�?? IEEE Photon. Technol. Lett. 4, 1204-1206 (1992).
[CrossRef]

J. Lightwave Technol. (2)

J.L. Archambault, R.J. Black, S. Lacroix, and J. Bures, �??Loss calculations for antiresonant waveguides,�?? J. Lightwave Technol., 11, 416-423 (1993).
[CrossRef]

W. Huang, R. Shubair, A. Nathan, and Y.L. Chow, �??The modal characteristics of ARROW structures,�?? J. Lightwave Technol., 10, 1015-1022, (1992).
[CrossRef]

Laser Focus World (1)

P. Russell, �??Holey fiber concept spawns optical-fiber renaissance,�?? Laser Focus World 38, 77-82 (2002).

Nature (1)

B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, and Y. Fink, �??Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,�?? Nature 420, 650-653 (2002).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (1)

M. Paternostro, M.S. Kim, and B.S. Ham, �??Generation of entangled coherent states via XPM in a double EIT scheme,�?? Phys. Rev. A 67, 023811 (2003).
[CrossRef]

Science (1)

Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, and E.L. Thomas, �??A dielectric omnidirectional reflector,�?? Science 282, 1679-1682 (1998).
[CrossRef]

Tech. Digest, Int. Photonics Res. Conf. (1)

H. Schmidt, D. Yin, and A.R. Hawkins, "Integrated optical spectroscopy of low-index gases and liquids using ARROW waveguides," Technical Digest, Integrated Photonics Research Conference, Washington DC, June 16-18, 2003.

Other (1)

P. Yeh, Optical waves in layered media, (Wiley 1988) Ch. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics