Abstract

Ultrashort pulse propagation through grating-assisted codirectional couplers (GACCs) operating in the linear regime is theoretically investigated. For this purpose, the temporal responses of uniform GACCs to ultrashort optical pulses are calculated and the effects of varying the different physical grating parameters (e.g., length and coupling strength) on these temporal responses are evaluated. We will show that the most interesting pulse re-shaping operations occur typically for the “energy receptor” mode and that depending on the length and coupling strength of the uniform perturbation one can achieve very different temporal shapes at the output of the device, including triangular pulses, square temporal waveforms as well as sequences of equalized multiple pulses. Moreover, the temporal scales of the pulses generated from a GACC are generally much shorter (in more than one order of magnitude) than those that can be generated from an equivalent Bragg grating (with the same grating length).

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Kashyap, Fiber Bragg Gratings, Academic Press, San Diego, (1999).
  2. Y. Chen and A. W. Snyder, �??Grating-assisted couplers,�?? Opt. Lett. 16, 217-219 (1991).
    [CrossRef] [PubMed]
  3. W. Huang. B. E. Little and S. K. Chaudhuri, �??A new approach to grating-assisted couplers,�?? J. Lightwave Technol. 9, 721-727 (1991).
    [CrossRef]
  4. A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, �??Long-period fiber-grating-based gain equalizers,�?? Opt. Lett. 21, 336-338 (1996).
    [CrossRef] [PubMed]
  5. J. E. Sipe, C. Martijn de Sterke, and B. J. Eggleton, �??Rigorous derivation of coupled mode equations for short, high-intensity grating-coupled, co-propagating pulses,�?? J. Mod. Opt. 49, 1437-1452 (2002).
    [CrossRef]
  6. K. B. Hill, D. J. Brady, �??Impulse responses of strong reflection holograms,�?? Appl. Opt. 32, 4305-4316 (1993).
    [CrossRef] [PubMed]
  7. K. Rottwitt, M. J. Guy, A. Boskovic, D. U. Noske, J. R. Taylor, R. Kashyap, �??Interaction of uniform phase picosecond pulses with chirped and unchirped photosensitive fibre Bragg gratings,�?? Electron. Lett. 30, 995-996 (1994).
    [CrossRef]
  8. D. Taverner, D. J. Richardson, J.-L. Archambault, L. Reekie, P. St. J. Russell, and D. N. Payne, �??Experimental investigation of picosecond pulse reflection from fiber gratings,�?? Opt. Lett. 20, 282-284 (1995).
    [CrossRef] [PubMed]
  9. L. R. Chen, S. D. Benjamin, P. W. E. Smith, J. E. Sipe, S. Juma, �??Ultrashort pulse propagation in multiple-grating fiber structures,�?? Opt. Lett. 22, 402-405 (1997).
    [CrossRef] [PubMed]
  10. L. R. Chen, S. D. Benjamin, H. Jung, P.W.E. Smith, and J. E. Sipe,"Dynamics of Ultrashort Pulse Propagation Through Fiber Gratings," Opt. Express 1, 242-249 (1997), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-9-242">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-9-242</a>
    [CrossRef] [PubMed]
  11. Ph. Emplit, M. Haelterman, R. Kashyap and M. De Lathouwer, �??Fiber Bragg grating for optical dark soliton generation,�?? IEEE Photon. Technol. Lett. 9, 1122-1124 (1997)
    [CrossRef]
  12. P. Petropoulos, M. Ibsen, A. D. Ellis and D. J. Richardson, �??Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating,�?? J. Lightwave Technol. 19, 746-752 (2001).
    [CrossRef]
  13. M. Marano, S. Longhi, P. Laporta, M. Belmonte and B. Agogliati, �??All-optical square-pulse generation and multiplication at 1.5 µm by use of a novel class of fiber Bragg gratings,�?? Opt. Lett. 26, 1615-1617 (2001).
    [CrossRef]
  14. N. K. Berger, B. Levit, S. Atkins and B. Fischer, �??Repetition-rate multiplication of optical pulses using uniform fiber Bragg gratings,�?? Opt. Commun. 221, 331-335 (2003).
    [CrossRef]
  15. Azaña, R. Slavík. P. Kockaert, L.R. Chen, S. LaRochelle, �??Generation of customized ultrahigh repetition rate pulse sequences using superimposed fiber Bragg gratings,�?? IEEE J. Lightwave Technol. 21, 1490-1498 (2003).
    [CrossRef]
  16. R. R. A. Syms, S. Makrimichalou, A. S. Holmes, �??High-speed optical signal processing potential of grating-coupled waveguide filters,�?? Appl. Opt. 30, 3762 -3769 (1991).
    [CrossRef] [PubMed]
  17. J. N. Kutz, B. J. Eggleton, J. B. Stark, and R. E. Slusher, �??Nonlinear pulse propagation in long-period fiber gratings: Theory and experiment,�?? IEEE J. Select. Topics in Quantum Electron. 3, 1232-1245 (1997).
    [CrossRef]
  18. R. R. A. Syms, and S. Makrimichalou, �??Impulse response of grating-coupled waveguide filters by optical path integration in the time domain,�?? Appl. Opt. 31, 6453 - 6458 (1992).
    [CrossRef] [PubMed]
  19. M. Gioannini, and I. Montrosset, �??Time domain numerical model for linear and nonlinear grating assisted co-directional coupler,�?? Opt. Quantum Electron. 36, 119-131 (2004).
    [CrossRef]
  20. R. Feced, M. N. Zervas, �??Efficient inverse scattering algorithm for the design of grating-assisted codirectional mode couplers,�?? J. Opt. Soc. Am. A 17, 1573-1582 (2000).
    [CrossRef]

Appl. Opt. (3)

Electron. Lett. (1)

K. Rottwitt, M. J. Guy, A. Boskovic, D. U. Noske, J. R. Taylor, R. Kashyap, �??Interaction of uniform phase picosecond pulses with chirped and unchirped photosensitive fibre Bragg gratings,�?? Electron. Lett. 30, 995-996 (1994).
[CrossRef]

IEEE J. Lightwave Technol. (1)

Azaña, R. Slavík. P. Kockaert, L.R. Chen, S. LaRochelle, �??Generation of customized ultrahigh repetition rate pulse sequences using superimposed fiber Bragg gratings,�?? IEEE J. Lightwave Technol. 21, 1490-1498 (2003).
[CrossRef]

IEEE J. Sel. Topics in Quantum Electron. (1)

J. N. Kutz, B. J. Eggleton, J. B. Stark, and R. E. Slusher, �??Nonlinear pulse propagation in long-period fiber gratings: Theory and experiment,�?? IEEE J. Select. Topics in Quantum Electron. 3, 1232-1245 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Ph. Emplit, M. Haelterman, R. Kashyap and M. De Lathouwer, �??Fiber Bragg grating for optical dark soliton generation,�?? IEEE Photon. Technol. Lett. 9, 1122-1124 (1997)
[CrossRef]

J. Lightwave Technol. (2)

J. Mod. Opt. (1)

J. E. Sipe, C. Martijn de Sterke, and B. J. Eggleton, �??Rigorous derivation of coupled mode equations for short, high-intensity grating-coupled, co-propagating pulses,�?? J. Mod. Opt. 49, 1437-1452 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

N. K. Berger, B. Levit, S. Atkins and B. Fischer, �??Repetition-rate multiplication of optical pulses using uniform fiber Bragg gratings,�?? Opt. Commun. 221, 331-335 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett (1)

Y. Chen and A. W. Snyder, �??Grating-assisted couplers,�?? Opt. Lett. 16, 217-219 (1991).
[CrossRef] [PubMed]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

M. Gioannini, and I. Montrosset, �??Time domain numerical model for linear and nonlinear grating assisted co-directional coupler,�?? Opt. Quantum Electron. 36, 119-131 (2004).
[CrossRef]

Other (1)

R. Kashyap, Fiber Bragg Gratings, Academic Press, San Diego, (1999).

Supplementary Material (1)

» Media 1: MOV (998 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(2.1 MB) Movie showing the evolution of a Gaussian temporal pulse propagating through a GACC with a 30-mm long uniform grating and a coupling coefficient κ so that κL=π. The top (bottom) plot shows the evolution of the temporal response corresponding to the so-called “supplier” (“receptor”) mode. The input pulse to the GACC is also shown in the top plot. The label inside the figures indicates the grating distance z where the temporal responses are evaluated (z=14mm in the static figure) (14.1 MBversion).

Fig. 2.
Fig. 2.

Results corresponding to a GACC with a 14-mm long uniform grating: Temporal waveforms (left column) and spectra (right column) of the output pulses in the “receptor” mode (red curves), output pulses in the “supplier” mode (blue curves) and input pulses to the GACC (magenta curves) for different values of the grating strength (κL).

Fig.3.
Fig.3.

Results corresponding to a GACC with a 60-mm long uniform grating. Same definitions as for Fig. 2.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

h s ( t ) = 1 { H in ( ν ) H s ( ν ) }
h r ( t ) = 1 { H in ( ν ) H r ( ν ) }
H s ( ν ) = [ cos ( γ L ) + j σ γ sin ( γ L ) ] exp ( j ( β s σ ) L )
H r ( ν ) = j κ * γ sin ( γ L ) exp ( j ( β r + σ ) L )

Metrics