Abstract

We demonstrate reduction of group delay ripple (GDR) from 24 ps to 9 ps peak to peak in a four channel 43 Gb/s dispersion compensating chirped fiber grating by adiabatic UV post processing. The eye opening penalty due to the grating GDR was improved from ~2dB to <1dB for all of the channels over a range of carrier frequencies of 15GHz. Our results demonstrate that at 43 Gb/s, the adiabatic UV correction technique is sufficient to substantially improve multi-channel fiber grating performance. We also discuss three limitations of the correction technique which cause GDR to vary from channel to channel: Noise in the sampling function, cladding mode loss, and varying channel reflectivity. While these limitations are visible in our results they do not reduce the effectiveness of the adiabatic correction for our gratings.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Moss, S. McLaughlin, G. Randall, M. Lamont, M. Ardekani, P. Colbourne, “Multichannel tunable dispersion compensation using all-pass multicavity etalons,” OFC 2002 Technical Digest (Optical Society of America, Washington, D.C.), 132.
  2. C. K. Madsen, “Integrated waveguide all pass filter tunable dispersion compensators,” OFC 2002 Technical Digest (Optical Society of America, Washington, D.C.), 131.
  3. Y. Li, B. Zhu, C. Soccolich, L. Nelson, N. Litchinitser, G. Hancsin, “Multi-Channel High-Performance Tunable Dispersion Compensator For 40 Gb/s Transmission Systems,” OFC 2003 Technical Digest 2, (Optical Society of America, Washington, D.C.), 517.
  4. W. H. Loh, F. Q. Zhou, J. J. Pan, “Sampled Fiber Grating Based-Dispersion Slope Compensator,” IEEE Phot. Tech. Lett. 11, 1280, October 1999.
    [CrossRef]
  5. H. Li, Y. Sheng, Y. Li, J. E. Rothenberg, “Phased-Only Sampled Fiber Bragg Gratings for High-Channel-Count Chromatic Dispersion Compensation,” J. Lightwave Technol. 21, 2073–2084 (2003).
  6. A. K. Ahuja, P. E. Steinvurzel, B. J. Eggleton, J. A. Rogers, “Tunable single phase-shifted and superstructure gratings using microfabricated on-fiber thin film heaters,” Opt. Commun. 184, 119–125, October 2000.
    [CrossRef]
  7. R. Lachance, S. Lelièvre, Y. Painchaud, “50 and 100GHz Multi-Channel Tunable Chromatic Dispersion Slope Compensator,” OFC 2003 Technical Digest 1, (Optical Society of America, Washington, D.C.), 164.
  8. B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lightwave Technol. 18, 1418–1432 (2000)
    [CrossRef]
  9. A. V. Buryak, D. Y. Stepanov, “Correction of systematic errors in the fabrication of fiber Bragg gratings,” Opt. Lett. 27, 1099 (2002).
    [CrossRef]
  10. T. Komukai, T. Inui, M. Kurihara, S. Fujimoto, “Group-delay ripple reduction in step-chirped fiber Bragg gratings by using laser-beam written step-chirped phase masks,” IEEE Photon. Technol. Lett. 14, 1554–1556 (2002).
    [CrossRef]
  11. K. Y. Kolossovski, R. A. Sammut, A.V. Buryak, D. Y. Stepanov, “Three-step design optimization for multi-channel fibre Bragg gratings,” Opt. Express 11, 1029–1038 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1029
    [CrossRef] [PubMed]
  12. M. Sumetsky, P. I. Reyes, P. S. Westbrook, N. M. Litchinitser, B. J. Eggleton, “Group delay ripple correction in chirped fiber Bragg gratings,” Opt. Lett. 28, 777–779, (2003).
    [CrossRef] [PubMed]
  13. M. Sumetsky, P. S. Westbrook, P. I. Reyes, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey, “Reduction of chirped fiber grating group delay ripple penalty through UV post processing,” Optical Fiber Communication Conference Postdeadline Papers PD28-1, OSA, Washington DC, 2003.
  14. N. M. Litchinitser, Y. Li, M. Sumetsky, P. S. Westbrook, B. J. Eggleton, “Tunable dispersion compensation devices: Group delay ripple and system performance,” in OSA Trends in Optics and Photonics (TOPS), 86 Optical Fiber Communication Conference 2003, Technical Digest, Postconference Ed. (Optical Society of America, Washington, D. C., 2003) pp. 163–164.
  15. M. Sumetsky, B. J. Eggleton, C. M. de Sterke, “Theory of group delay ripple generated by chirped fiber gratings,” Opt. Express 10, 332–340 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-332
    [CrossRef] [PubMed]
  16. M. Sumetsky, N. M. Litchinitser, P. S. Westbrook, P. I. Reyes, B. J. Eggleton, Y. Li, R. Deskmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey “High-performance 40 Gbit/s fibre Bragg grating tunable dispersion compensator fabricated using group delay ripple correction technique,” Electron. Lett. 39, 1196–1198, Aug. 7, 2003.
    [CrossRef]

2003 (4)

H. Li, Y. Sheng, Y. Li, J. E. Rothenberg, “Phased-Only Sampled Fiber Bragg Gratings for High-Channel-Count Chromatic Dispersion Compensation,” J. Lightwave Technol. 21, 2073–2084 (2003).

K. Y. Kolossovski, R. A. Sammut, A.V. Buryak, D. Y. Stepanov, “Three-step design optimization for multi-channel fibre Bragg gratings,” Opt. Express 11, 1029–1038 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1029
[CrossRef] [PubMed]

M. Sumetsky, P. I. Reyes, P. S. Westbrook, N. M. Litchinitser, B. J. Eggleton, “Group delay ripple correction in chirped fiber Bragg gratings,” Opt. Lett. 28, 777–779, (2003).
[CrossRef] [PubMed]

M. Sumetsky, N. M. Litchinitser, P. S. Westbrook, P. I. Reyes, B. J. Eggleton, Y. Li, R. Deskmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey “High-performance 40 Gbit/s fibre Bragg grating tunable dispersion compensator fabricated using group delay ripple correction technique,” Electron. Lett. 39, 1196–1198, Aug. 7, 2003.
[CrossRef]

2002 (3)

2000 (2)

A. K. Ahuja, P. E. Steinvurzel, B. J. Eggleton, J. A. Rogers, “Tunable single phase-shifted and superstructure gratings using microfabricated on-fiber thin film heaters,” Opt. Commun. 184, 119–125, October 2000.
[CrossRef]

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lightwave Technol. 18, 1418–1432 (2000)
[CrossRef]

1999 (1)

W. H. Loh, F. Q. Zhou, J. J. Pan, “Sampled Fiber Grating Based-Dispersion Slope Compensator,” IEEE Phot. Tech. Lett. 11, 1280, October 1999.
[CrossRef]

Ahuja, A.

Ahuja, A. K.

A. K. Ahuja, P. E. Steinvurzel, B. J. Eggleton, J. A. Rogers, “Tunable single phase-shifted and superstructure gratings using microfabricated on-fiber thin film heaters,” Opt. Commun. 184, 119–125, October 2000.
[CrossRef]

Ardekani, M.

D. J. Moss, S. McLaughlin, G. Randall, M. Lamont, M. Ardekani, P. Colbourne, “Multichannel tunable dispersion compensation using all-pass multicavity etalons,” OFC 2002 Technical Digest (Optical Society of America, Washington, D.C.), 132.

Bennike, J.

M. Sumetsky, N. M. Litchinitser, P. S. Westbrook, P. I. Reyes, B. J. Eggleton, Y. Li, R. Deskmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey “High-performance 40 Gbit/s fibre Bragg grating tunable dispersion compensator fabricated using group delay ripple correction technique,” Electron. Lett. 39, 1196–1198, Aug. 7, 2003.
[CrossRef]

M. Sumetsky, P. S. Westbrook, P. I. Reyes, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey, “Reduction of chirped fiber grating group delay ripple penalty through UV post processing,” Optical Fiber Communication Conference Postdeadline Papers PD28-1, OSA, Washington DC, 2003.

Buryak, A. V.

Buryak, A.V.

Colbourne, P.

D. J. Moss, S. McLaughlin, G. Randall, M. Lamont, M. Ardekani, P. Colbourne, “Multichannel tunable dispersion compensation using all-pass multicavity etalons,” OFC 2002 Technical Digest (Optical Society of America, Washington, D.C.), 132.

de Sterke, C. M.

Deshmukh, R.

M. Sumetsky, P. S. Westbrook, P. I. Reyes, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey, “Reduction of chirped fiber grating group delay ripple penalty through UV post processing,” Optical Fiber Communication Conference Postdeadline Papers PD28-1, OSA, Washington DC, 2003.

Deskmukh, R.

M. Sumetsky, N. M. Litchinitser, P. S. Westbrook, P. I. Reyes, B. J. Eggleton, Y. Li, R. Deskmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey “High-performance 40 Gbit/s fibre Bragg grating tunable dispersion compensator fabricated using group delay ripple correction technique,” Electron. Lett. 39, 1196–1198, Aug. 7, 2003.
[CrossRef]

Dey, S.

M. Sumetsky, N. M. Litchinitser, P. S. Westbrook, P. I. Reyes, B. J. Eggleton, Y. Li, R. Deskmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey “High-performance 40 Gbit/s fibre Bragg grating tunable dispersion compensator fabricated using group delay ripple correction technique,” Electron. Lett. 39, 1196–1198, Aug. 7, 2003.
[CrossRef]

M. Sumetsky, P. S. Westbrook, P. I. Reyes, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey, “Reduction of chirped fiber grating group delay ripple penalty through UV post processing,” Optical Fiber Communication Conference Postdeadline Papers PD28-1, OSA, Washington DC, 2003.

Eggleton, B. J.

M. Sumetsky, P. I. Reyes, P. S. Westbrook, N. M. Litchinitser, B. J. Eggleton, “Group delay ripple correction in chirped fiber Bragg gratings,” Opt. Lett. 28, 777–779, (2003).
[CrossRef] [PubMed]

M. Sumetsky, N. M. Litchinitser, P. S. Westbrook, P. I. Reyes, B. J. Eggleton, Y. Li, R. Deskmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey “High-performance 40 Gbit/s fibre Bragg grating tunable dispersion compensator fabricated using group delay ripple correction technique,” Electron. Lett. 39, 1196–1198, Aug. 7, 2003.
[CrossRef]

M. Sumetsky, B. J. Eggleton, C. M. de Sterke, “Theory of group delay ripple generated by chirped fiber gratings,” Opt. Express 10, 332–340 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-332
[CrossRef] [PubMed]

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lightwave Technol. 18, 1418–1432 (2000)
[CrossRef]

A. K. Ahuja, P. E. Steinvurzel, B. J. Eggleton, J. A. Rogers, “Tunable single phase-shifted and superstructure gratings using microfabricated on-fiber thin film heaters,” Opt. Commun. 184, 119–125, October 2000.
[CrossRef]

M. Sumetsky, P. S. Westbrook, P. I. Reyes, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey, “Reduction of chirped fiber grating group delay ripple penalty through UV post processing,” Optical Fiber Communication Conference Postdeadline Papers PD28-1, OSA, Washington DC, 2003.

N. M. Litchinitser, Y. Li, M. Sumetsky, P. S. Westbrook, B. J. Eggleton, “Tunable dispersion compensation devices: Group delay ripple and system performance,” in OSA Trends in Optics and Photonics (TOPS), 86 Optical Fiber Communication Conference 2003, Technical Digest, Postconference Ed. (Optical Society of America, Washington, D. C., 2003) pp. 163–164.

Fujimoto, S.

T. Komukai, T. Inui, M. Kurihara, S. Fujimoto, “Group-delay ripple reduction in step-chirped fiber Bragg gratings by using laser-beam written step-chirped phase masks,” IEEE Photon. Technol. Lett. 14, 1554–1556 (2002).
[CrossRef]

Hancsin, G.

Y. Li, B. Zhu, C. Soccolich, L. Nelson, N. Litchinitser, G. Hancsin, “Multi-Channel High-Performance Tunable Dispersion Compensator For 40 Gb/s Transmission Systems,” OFC 2003 Technical Digest 2, (Optical Society of America, Washington, D.C.), 517.

Inui, T.

T. Komukai, T. Inui, M. Kurihara, S. Fujimoto, “Group-delay ripple reduction in step-chirped fiber Bragg gratings by using laser-beam written step-chirped phase masks,” IEEE Photon. Technol. Lett. 14, 1554–1556 (2002).
[CrossRef]

Kolossovski, K. Y.

Komukai, T.

T. Komukai, T. Inui, M. Kurihara, S. Fujimoto, “Group-delay ripple reduction in step-chirped fiber Bragg gratings by using laser-beam written step-chirped phase masks,” IEEE Photon. Technol. Lett. 14, 1554–1556 (2002).
[CrossRef]

Kuo, P.

Kurihara, M.

T. Komukai, T. Inui, M. Kurihara, S. Fujimoto, “Group-delay ripple reduction in step-chirped fiber Bragg gratings by using laser-beam written step-chirped phase masks,” IEEE Photon. Technol. Lett. 14, 1554–1556 (2002).
[CrossRef]

Lachance, R.

R. Lachance, S. Lelièvre, Y. Painchaud, “50 and 100GHz Multi-Channel Tunable Chromatic Dispersion Slope Compensator,” OFC 2003 Technical Digest 1, (Optical Society of America, Washington, D.C.), 164.

Lamont, M.

D. J. Moss, S. McLaughlin, G. Randall, M. Lamont, M. Ardekani, P. Colbourne, “Multichannel tunable dispersion compensation using all-pass multicavity etalons,” OFC 2002 Technical Digest (Optical Society of America, Washington, D.C.), 132.

Lelièvre, S.

R. Lachance, S. Lelièvre, Y. Painchaud, “50 and 100GHz Multi-Channel Tunable Chromatic Dispersion Slope Compensator,” OFC 2003 Technical Digest 1, (Optical Society of America, Washington, D.C.), 164.

Li, H.

H. Li, Y. Sheng, Y. Li, J. E. Rothenberg, “Phased-Only Sampled Fiber Bragg Gratings for High-Channel-Count Chromatic Dispersion Compensation,” J. Lightwave Technol. 21, 2073–2084 (2003).

Li, Y.

H. Li, Y. Sheng, Y. Li, J. E. Rothenberg, “Phased-Only Sampled Fiber Bragg Gratings for High-Channel-Count Chromatic Dispersion Compensation,” J. Lightwave Technol. 21, 2073–2084 (2003).

M. Sumetsky, N. M. Litchinitser, P. S. Westbrook, P. I. Reyes, B. J. Eggleton, Y. Li, R. Deskmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey “High-performance 40 Gbit/s fibre Bragg grating tunable dispersion compensator fabricated using group delay ripple correction technique,” Electron. Lett. 39, 1196–1198, Aug. 7, 2003.
[CrossRef]

Y. Li, B. Zhu, C. Soccolich, L. Nelson, N. Litchinitser, G. Hancsin, “Multi-Channel High-Performance Tunable Dispersion Compensator For 40 Gb/s Transmission Systems,” OFC 2003 Technical Digest 2, (Optical Society of America, Washington, D.C.), 517.

M. Sumetsky, P. S. Westbrook, P. I. Reyes, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey, “Reduction of chirped fiber grating group delay ripple penalty through UV post processing,” Optical Fiber Communication Conference Postdeadline Papers PD28-1, OSA, Washington DC, 2003.

N. M. Litchinitser, Y. Li, M. Sumetsky, P. S. Westbrook, B. J. Eggleton, “Tunable dispersion compensation devices: Group delay ripple and system performance,” in OSA Trends in Optics and Photonics (TOPS), 86 Optical Fiber Communication Conference 2003, Technical Digest, Postconference Ed. (Optical Society of America, Washington, D. C., 2003) pp. 163–164.

Litchinitser, N.

Y. Li, B. Zhu, C. Soccolich, L. Nelson, N. Litchinitser, G. Hancsin, “Multi-Channel High-Performance Tunable Dispersion Compensator For 40 Gb/s Transmission Systems,” OFC 2003 Technical Digest 2, (Optical Society of America, Washington, D.C.), 517.

Litchinitser, N. M.

M. Sumetsky, N. M. Litchinitser, P. S. Westbrook, P. I. Reyes, B. J. Eggleton, Y. Li, R. Deskmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey “High-performance 40 Gbit/s fibre Bragg grating tunable dispersion compensator fabricated using group delay ripple correction technique,” Electron. Lett. 39, 1196–1198, Aug. 7, 2003.
[CrossRef]

M. Sumetsky, P. I. Reyes, P. S. Westbrook, N. M. Litchinitser, B. J. Eggleton, “Group delay ripple correction in chirped fiber Bragg gratings,” Opt. Lett. 28, 777–779, (2003).
[CrossRef] [PubMed]

N. M. Litchinitser, Y. Li, M. Sumetsky, P. S. Westbrook, B. J. Eggleton, “Tunable dispersion compensation devices: Group delay ripple and system performance,” in OSA Trends in Optics and Photonics (TOPS), 86 Optical Fiber Communication Conference 2003, Technical Digest, Postconference Ed. (Optical Society of America, Washington, D. C., 2003) pp. 163–164.

M. Sumetsky, P. S. Westbrook, P. I. Reyes, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey, “Reduction of chirped fiber grating group delay ripple penalty through UV post processing,” Optical Fiber Communication Conference Postdeadline Papers PD28-1, OSA, Washington DC, 2003.

Liu, F.

M. Sumetsky, N. M. Litchinitser, P. S. Westbrook, P. I. Reyes, B. J. Eggleton, Y. Li, R. Deskmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey “High-performance 40 Gbit/s fibre Bragg grating tunable dispersion compensator fabricated using group delay ripple correction technique,” Electron. Lett. 39, 1196–1198, Aug. 7, 2003.
[CrossRef]

M. Sumetsky, P. S. Westbrook, P. I. Reyes, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey, “Reduction of chirped fiber grating group delay ripple penalty through UV post processing,” Optical Fiber Communication Conference Postdeadline Papers PD28-1, OSA, Washington DC, 2003.

Loh, W. H.

W. H. Loh, F. Q. Zhou, J. J. Pan, “Sampled Fiber Grating Based-Dispersion Slope Compensator,” IEEE Phot. Tech. Lett. 11, 1280, October 1999.
[CrossRef]

Madsen, C. K.

C. K. Madsen, “Integrated waveguide all pass filter tunable dispersion compensators,” OFC 2002 Technical Digest (Optical Society of America, Washington, D.C.), 131.

McLaughlin, S.

D. J. Moss, S. McLaughlin, G. Randall, M. Lamont, M. Ardekani, P. Colbourne, “Multichannel tunable dispersion compensation using all-pass multicavity etalons,” OFC 2002 Technical Digest (Optical Society of America, Washington, D.C.), 132.

Mikkelsen, B.

Moss, D. J.

D. J. Moss, S. McLaughlin, G. Randall, M. Lamont, M. Ardekani, P. Colbourne, “Multichannel tunable dispersion compensation using all-pass multicavity etalons,” OFC 2002 Technical Digest (Optical Society of America, Washington, D.C.), 132.

Nelson, L.

Y. Li, B. Zhu, C. Soccolich, L. Nelson, N. Litchinitser, G. Hancsin, “Multi-Channel High-Performance Tunable Dispersion Compensator For 40 Gb/s Transmission Systems,” OFC 2003 Technical Digest 2, (Optical Society of America, Washington, D.C.), 517.

Nielsen, T. N.

Painchaud, Y.

R. Lachance, S. Lelièvre, Y. Painchaud, “50 and 100GHz Multi-Channel Tunable Chromatic Dispersion Slope Compensator,” OFC 2003 Technical Digest 1, (Optical Society of America, Washington, D.C.), 164.

Pan, J. J.

W. H. Loh, F. Q. Zhou, J. J. Pan, “Sampled Fiber Grating Based-Dispersion Slope Compensator,” IEEE Phot. Tech. Lett. 11, 1280, October 1999.
[CrossRef]

Randall, G.

D. J. Moss, S. McLaughlin, G. Randall, M. Lamont, M. Ardekani, P. Colbourne, “Multichannel tunable dispersion compensation using all-pass multicavity etalons,” OFC 2002 Technical Digest (Optical Society of America, Washington, D.C.), 132.

Reyes, P. I.

M. Sumetsky, P. I. Reyes, P. S. Westbrook, N. M. Litchinitser, B. J. Eggleton, “Group delay ripple correction in chirped fiber Bragg gratings,” Opt. Lett. 28, 777–779, (2003).
[CrossRef] [PubMed]

M. Sumetsky, N. M. Litchinitser, P. S. Westbrook, P. I. Reyes, B. J. Eggleton, Y. Li, R. Deskmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey “High-performance 40 Gbit/s fibre Bragg grating tunable dispersion compensator fabricated using group delay ripple correction technique,” Electron. Lett. 39, 1196–1198, Aug. 7, 2003.
[CrossRef]

M. Sumetsky, P. S. Westbrook, P. I. Reyes, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey, “Reduction of chirped fiber grating group delay ripple penalty through UV post processing,” Optical Fiber Communication Conference Postdeadline Papers PD28-1, OSA, Washington DC, 2003.

Rogers, J. A.

A. K. Ahuja, P. E. Steinvurzel, B. J. Eggleton, J. A. Rogers, “Tunable single phase-shifted and superstructure gratings using microfabricated on-fiber thin film heaters,” Opt. Commun. 184, 119–125, October 2000.
[CrossRef]

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lightwave Technol. 18, 1418–1432 (2000)
[CrossRef]

Rosca, F.

M. Sumetsky, N. M. Litchinitser, P. S. Westbrook, P. I. Reyes, B. J. Eggleton, Y. Li, R. Deskmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey “High-performance 40 Gbit/s fibre Bragg grating tunable dispersion compensator fabricated using group delay ripple correction technique,” Electron. Lett. 39, 1196–1198, Aug. 7, 2003.
[CrossRef]

M. Sumetsky, P. S. Westbrook, P. I. Reyes, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey, “Reduction of chirped fiber grating group delay ripple penalty through UV post processing,” Optical Fiber Communication Conference Postdeadline Papers PD28-1, OSA, Washington DC, 2003.

Rothenberg, J. E.

H. Li, Y. Sheng, Y. Li, J. E. Rothenberg, “Phased-Only Sampled Fiber Bragg Gratings for High-Channel-Count Chromatic Dispersion Compensation,” J. Lightwave Technol. 21, 2073–2084 (2003).

Sammut, R. A.

Sheng, Y.

H. Li, Y. Sheng, Y. Li, J. E. Rothenberg, “Phased-Only Sampled Fiber Bragg Gratings for High-Channel-Count Chromatic Dispersion Compensation,” J. Lightwave Technol. 21, 2073–2084 (2003).

Soccolich, C.

M. Sumetsky, N. M. Litchinitser, P. S. Westbrook, P. I. Reyes, B. J. Eggleton, Y. Li, R. Deskmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey “High-performance 40 Gbit/s fibre Bragg grating tunable dispersion compensator fabricated using group delay ripple correction technique,” Electron. Lett. 39, 1196–1198, Aug. 7, 2003.
[CrossRef]

Y. Li, B. Zhu, C. Soccolich, L. Nelson, N. Litchinitser, G. Hancsin, “Multi-Channel High-Performance Tunable Dispersion Compensator For 40 Gb/s Transmission Systems,” OFC 2003 Technical Digest 2, (Optical Society of America, Washington, D.C.), 517.

M. Sumetsky, P. S. Westbrook, P. I. Reyes, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey, “Reduction of chirped fiber grating group delay ripple penalty through UV post processing,” Optical Fiber Communication Conference Postdeadline Papers PD28-1, OSA, Washington DC, 2003.

Steinvurzel, P. E.

A. K. Ahuja, P. E. Steinvurzel, B. J. Eggleton, J. A. Rogers, “Tunable single phase-shifted and superstructure gratings using microfabricated on-fiber thin film heaters,” Opt. Commun. 184, 119–125, October 2000.
[CrossRef]

Stepanov, D. Y.

Sumetsky, M.

M. Sumetsky, P. I. Reyes, P. S. Westbrook, N. M. Litchinitser, B. J. Eggleton, “Group delay ripple correction in chirped fiber Bragg gratings,” Opt. Lett. 28, 777–779, (2003).
[CrossRef] [PubMed]

M. Sumetsky, N. M. Litchinitser, P. S. Westbrook, P. I. Reyes, B. J. Eggleton, Y. Li, R. Deskmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey “High-performance 40 Gbit/s fibre Bragg grating tunable dispersion compensator fabricated using group delay ripple correction technique,” Electron. Lett. 39, 1196–1198, Aug. 7, 2003.
[CrossRef]

M. Sumetsky, B. J. Eggleton, C. M. de Sterke, “Theory of group delay ripple generated by chirped fiber gratings,” Opt. Express 10, 332–340 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-332
[CrossRef] [PubMed]

N. M. Litchinitser, Y. Li, M. Sumetsky, P. S. Westbrook, B. J. Eggleton, “Tunable dispersion compensation devices: Group delay ripple and system performance,” in OSA Trends in Optics and Photonics (TOPS), 86 Optical Fiber Communication Conference 2003, Technical Digest, Postconference Ed. (Optical Society of America, Washington, D. C., 2003) pp. 163–164.

M. Sumetsky, P. S. Westbrook, P. I. Reyes, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey, “Reduction of chirped fiber grating group delay ripple penalty through UV post processing,” Optical Fiber Communication Conference Postdeadline Papers PD28-1, OSA, Washington DC, 2003.

Westbrook, P. S.

M. Sumetsky, P. I. Reyes, P. S. Westbrook, N. M. Litchinitser, B. J. Eggleton, “Group delay ripple correction in chirped fiber Bragg gratings,” Opt. Lett. 28, 777–779, (2003).
[CrossRef] [PubMed]

M. Sumetsky, N. M. Litchinitser, P. S. Westbrook, P. I. Reyes, B. J. Eggleton, Y. Li, R. Deskmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey “High-performance 40 Gbit/s fibre Bragg grating tunable dispersion compensator fabricated using group delay ripple correction technique,” Electron. Lett. 39, 1196–1198, Aug. 7, 2003.
[CrossRef]

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lightwave Technol. 18, 1418–1432 (2000)
[CrossRef]

N. M. Litchinitser, Y. Li, M. Sumetsky, P. S. Westbrook, B. J. Eggleton, “Tunable dispersion compensation devices: Group delay ripple and system performance,” in OSA Trends in Optics and Photonics (TOPS), 86 Optical Fiber Communication Conference 2003, Technical Digest, Postconference Ed. (Optical Society of America, Washington, D. C., 2003) pp. 163–164.

M. Sumetsky, P. S. Westbrook, P. I. Reyes, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey, “Reduction of chirped fiber grating group delay ripple penalty through UV post processing,” Optical Fiber Communication Conference Postdeadline Papers PD28-1, OSA, Washington DC, 2003.

Zhou, F. Q.

W. H. Loh, F. Q. Zhou, J. J. Pan, “Sampled Fiber Grating Based-Dispersion Slope Compensator,” IEEE Phot. Tech. Lett. 11, 1280, October 1999.
[CrossRef]

Zhu, B.

Y. Li, B. Zhu, C. Soccolich, L. Nelson, N. Litchinitser, G. Hancsin, “Multi-Channel High-Performance Tunable Dispersion Compensator For 40 Gb/s Transmission Systems,” OFC 2003 Technical Digest 2, (Optical Society of America, Washington, D.C.), 517.

Electron. Lett. (1)

M. Sumetsky, N. M. Litchinitser, P. S. Westbrook, P. I. Reyes, B. J. Eggleton, Y. Li, R. Deskmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey “High-performance 40 Gbit/s fibre Bragg grating tunable dispersion compensator fabricated using group delay ripple correction technique,” Electron. Lett. 39, 1196–1198, Aug. 7, 2003.
[CrossRef]

IEEE Phot. Tech. Lett. (1)

W. H. Loh, F. Q. Zhou, J. J. Pan, “Sampled Fiber Grating Based-Dispersion Slope Compensator,” IEEE Phot. Tech. Lett. 11, 1280, October 1999.
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Komukai, T. Inui, M. Kurihara, S. Fujimoto, “Group-delay ripple reduction in step-chirped fiber Bragg gratings by using laser-beam written step-chirped phase masks,” IEEE Photon. Technol. Lett. 14, 1554–1556 (2002).
[CrossRef]

J. Lightwave Technol. (2)

H. Li, Y. Sheng, Y. Li, J. E. Rothenberg, “Phased-Only Sampled Fiber Bragg Gratings for High-Channel-Count Chromatic Dispersion Compensation,” J. Lightwave Technol. 21, 2073–2084 (2003).

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lightwave Technol. 18, 1418–1432 (2000)
[CrossRef]

Opt. Commun. (1)

A. K. Ahuja, P. E. Steinvurzel, B. J. Eggleton, J. A. Rogers, “Tunable single phase-shifted and superstructure gratings using microfabricated on-fiber thin film heaters,” Opt. Commun. 184, 119–125, October 2000.
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (6)

D. J. Moss, S. McLaughlin, G. Randall, M. Lamont, M. Ardekani, P. Colbourne, “Multichannel tunable dispersion compensation using all-pass multicavity etalons,” OFC 2002 Technical Digest (Optical Society of America, Washington, D.C.), 132.

C. K. Madsen, “Integrated waveguide all pass filter tunable dispersion compensators,” OFC 2002 Technical Digest (Optical Society of America, Washington, D.C.), 131.

Y. Li, B. Zhu, C. Soccolich, L. Nelson, N. Litchinitser, G. Hancsin, “Multi-Channel High-Performance Tunable Dispersion Compensator For 40 Gb/s Transmission Systems,” OFC 2003 Technical Digest 2, (Optical Society of America, Washington, D.C.), 517.

R. Lachance, S. Lelièvre, Y. Painchaud, “50 and 100GHz Multi-Channel Tunable Chromatic Dispersion Slope Compensator,” OFC 2003 Technical Digest 1, (Optical Society of America, Washington, D.C.), 164.

M. Sumetsky, P. S. Westbrook, P. I. Reyes, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, S. Dey, “Reduction of chirped fiber grating group delay ripple penalty through UV post processing,” Optical Fiber Communication Conference Postdeadline Papers PD28-1, OSA, Washington DC, 2003.

N. M. Litchinitser, Y. Li, M. Sumetsky, P. S. Westbrook, B. J. Eggleton, “Tunable dispersion compensation devices: Group delay ripple and system performance,” in OSA Trends in Optics and Photonics (TOPS), 86 Optical Fiber Communication Conference 2003, Technical Digest, Postconference Ed. (Optical Society of America, Washington, D. C., 2003) pp. 163–164.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup used to fabricate the multi-channel gratings and implement the iterative correction method.

Fig. 2.
Fig. 2.

Calibration of the adiabatic rescaling parameters to create an accurate correction profile. If the observed differential matches the applied correction profile, then the rescaling parameters A, k, and λ are correct.

Fig. 3.
Fig. 3.

The total applied correction profile matches the differential between the GDRs of the initial and final iterations.

Fig. 4.
Fig. 4.

Plots of reflection spectrum (left row) and smoothed GDR (right row) of the four channels of the superstructure grating. In each channel plot, black: before correction, green: after correction, red: after anneal. Note that an arbitrary offset was added in x and y to the three reflection and GDR plots (black, green, and red) from each channel to simplify the comparison. The reference level for the reflection spectra in black is 0dB, -1 dB for the green plot, and -2 dB for the red plot.

Fig 5.
Fig 5.

43 Gb/s NRZ eye diagrams at the output of the electrical Bessel filter of the simulation setup without the grating (left plot) and with the grating (right plot). Rectangles of fixed widths (20% of the bit period) are fitted within each eye diagram by adjusting their heights. The reduction in height gives a measure of the EOP.

Fig. 6.
Fig. 6.

EOP simulation plots for the four strongest channels before and after correction of the superstructure grating GDR. Zero detuning corresponds to approximate center of the reflection band of Fig. 4. Solid: amplitude, dashed: phase, bold: both. EOP near zero frequency offset improves by 0.5 to 1 dB in all channels.

Fig. 7.
Fig. 7.

Amplitude ripple affects the overall EOP of the grating for weak channels after correction. Notice that for the weak channel the EOP due to amplitude only effects already exhibits a small change after the correction has been applied (dark gray plot encircled in red).

Fig. 8.
Fig. 8.

Cladding mode loss introduces asymmetry to the multi-channel grating making the channel responses vary. The grating was index matched after the correction process to see the effect of changing the cladding mode loss. The EOPs of two of the channels show effect of cladding mode loss on GDR.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ n ac ( z ) = Δ n 0 [ sin ( k 1 z + C z 2 + φ 1 ( z ) ) + sin ( k 2 z + C z 2 + φ 2 ( z ) ) ]
= Δ n 0 sin ( k 1 + k 2 2 z + C z 2 + φ 1 ( z ) + φ 2 ( z ) 2 ) cos ( k 1 k 2 2 z + φ 1 ( z ) φ 2 ( z ) 2 )
n ( z ) = A exp { α exp ( β ln ( ( z z 0 ) 2 d 2 ) ) }
R = r exp [ α + α noise ( ω ) + i φ nosie ( ω ) ]

Metrics