Abstract

We report playback performance results of volumetric optical data storage disks that are made from a class of light-absorbing (photo-chromic) compounds. The disks are exposed to a simulated space environment with respect to temperature and radiation. To test for temperature sensitivity, a vacuum oven bakes the disks for certain amount of time at a designated temperature. Radiation exposure includes heavy ions and high energy protons. Disks fail in high temperature and large proton-dose conditions. Heavy ions do not cause significant disk failure. The prevention of disk failure due to harsh space environments is also discussed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Zhang, E. P. Walker, W. Feng, Y. Zhang, A. S. Dvornikov, S. Esener, and P. M. Rentzepis, “Multi-layer optical data storage based on two-photon recordable fluorescent disk media,” Eighteenth IEEE Symposium on Mass Storage System, 225–236 (2000).
  2. S. Kawata, “Three-dimensional Digital Optical Data-storage with Photorefractive Crystals,” Proc. SPIE 3470, 56–63, (1998).
    [Crossref]
  3. M. Hisaka, H. Ishitobi, and S. Kawata, “Three dimensional optical recording with the ferroelectric domain reversal in a Ce-doped SBN:75 crystal: experiment and calculation,” Proc. SPIE 3740, 109–112 (1999).
  4. A. Toriumi and S. Kawata, “Reflection confocal microscope readout system for three-dimensional photochromic optical data storage,” Opt. Lett.23, (1998).
    [Crossref]
  5. T. D. Milster, Y. Zhang, J. Butz, T. Miller, and E. P. Walker, “Volumetric Bit-Wise Memories, ” NASA earth science technology conference (2002).
  6. T. D. Milster, Y. Zhang, C. D. Pinto, and E. P. Walker, “A Volumetric Memory Device based on Photo-Chromatic Compounds,” NASA earth science technology conference (2001).
  7. S. Hunter, “Potentials of two-photon 3-D optical memories for high performance computing,” Appl. Opt. 29, 2058–2066 (1990).
    [Crossref] [PubMed]
  8. D. C. Hutchings, “Kramers-Kronig relations in nonlinear optics,” Opt. Quantum Electron. 24.1–30 (1992).
    [Crossref]
  9. E. W. Van Stryland, “Characterization of nonlinear optical absorption and refraction,” Prog. Crys. Grow. And Chac. 27, 279–311 (1993).
    [Crossref]
  10. H. Zhang, “Single-beam two-photon-recorded monolithic multi-layer optical disks,” Proc. SPIE 4090, 174–178 (2000).
    [Crossref]
  11. T. D. Milster, “Semi-kinematic rails for construction of optical test stands”. SPIE Annual Meeting, San Diego, Aug. 2 (2001).
  12. E. P. Walker, “Servo error signal generation for two-photon-recorded monolithic multilayer optical data storage,”. Proc. SPIE 4090179–184, (2000).
    [Crossref]
  13. For the detailed information of Arrhenius model and the failure rate, http://www.vishay.com/docs/rect_reliability.pdf.
  14. D. Malacara, “Optical Shop Testing,” Wiley series in pure and applied optics, 2nd edition.
  15. J. Barth, “Ionizing Radiation Environment Concerns,” conference of single event effect criticality analysis, http://radhome.gsfc.nasa.gov/radhome/papers/seeca3.htm.
  16. T. Miyahira “Initial SEE Tests of SanDisk Flash Memory,” http://radnet.jpl.nasa.gov/reports/1/ReportFiles/078-SanDisk2.PDF.
  17. J. Coss, “Device SEE Susceptibility Update: 1996–1998,” http://radnet.jpl.nasa.gov/reports/1/ReportFiles/Update.PDF.
  18. T. Miyahira, “Summary of SEE test results from BNL heavy ion test,” http://radnet.jpl.nasa.gov/reports/1/ReportFiles/9902bnl.PDF.
  19. For more information of calculating penetration depth, http://tvdg10.phy.bnl.gov/LETCalc.html.
  20. S. Guertin, “Single-Event Upset Test Results for the Xilnx XQ1701L PROM,” IEEE Radiation Effects Data Workshop, pp. 14–21 (1999) http://radnet.jpl.nasa.gov/reports/1/ReportFiles/Xilinx_R1701L.pdf.
  21. L. Scheick, “SEE measurement at Brookhaven National Laboratory for the SRAMs: WMS128K8 128*8, MT5C2568 32K*8, MT5C2564 64K*4,” http://radnet.jpl.nasa.gov/reports/1/ReportFiles/SRAMS.PDF.
  22. G. Swift “In-Flight Observations of Multiple-Bit Upset in DRAMs” http://radnet.jpl.nasa.gov/reports/1/ReportFiles/CassDRAM.pdf.

2000 (2)

H. Zhang, “Single-beam two-photon-recorded monolithic multi-layer optical disks,” Proc. SPIE 4090, 174–178 (2000).
[Crossref]

E. P. Walker, “Servo error signal generation for two-photon-recorded monolithic multilayer optical data storage,”. Proc. SPIE 4090179–184, (2000).
[Crossref]

1999 (1)

M. Hisaka, H. Ishitobi, and S. Kawata, “Three dimensional optical recording with the ferroelectric domain reversal in a Ce-doped SBN:75 crystal: experiment and calculation,” Proc. SPIE 3740, 109–112 (1999).

1998 (1)

S. Kawata, “Three-dimensional Digital Optical Data-storage with Photorefractive Crystals,” Proc. SPIE 3470, 56–63, (1998).
[Crossref]

1993 (1)

E. W. Van Stryland, “Characterization of nonlinear optical absorption and refraction,” Prog. Crys. Grow. And Chac. 27, 279–311 (1993).
[Crossref]

1992 (1)

D. C. Hutchings, “Kramers-Kronig relations in nonlinear optics,” Opt. Quantum Electron. 24.1–30 (1992).
[Crossref]

1990 (1)

Barth, J.

J. Barth, “Ionizing Radiation Environment Concerns,” conference of single event effect criticality analysis, http://radhome.gsfc.nasa.gov/radhome/papers/seeca3.htm.

Butz, J.

T. D. Milster, Y. Zhang, J. Butz, T. Miller, and E. P. Walker, “Volumetric Bit-Wise Memories, ” NASA earth science technology conference (2002).

Coss, J.

J. Coss, “Device SEE Susceptibility Update: 1996–1998,” http://radnet.jpl.nasa.gov/reports/1/ReportFiles/Update.PDF.

Dvornikov, A. S.

H. Zhang, E. P. Walker, W. Feng, Y. Zhang, A. S. Dvornikov, S. Esener, and P. M. Rentzepis, “Multi-layer optical data storage based on two-photon recordable fluorescent disk media,” Eighteenth IEEE Symposium on Mass Storage System, 225–236 (2000).

Esener, S.

H. Zhang, E. P. Walker, W. Feng, Y. Zhang, A. S. Dvornikov, S. Esener, and P. M. Rentzepis, “Multi-layer optical data storage based on two-photon recordable fluorescent disk media,” Eighteenth IEEE Symposium on Mass Storage System, 225–236 (2000).

Feng, W.

H. Zhang, E. P. Walker, W. Feng, Y. Zhang, A. S. Dvornikov, S. Esener, and P. M. Rentzepis, “Multi-layer optical data storage based on two-photon recordable fluorescent disk media,” Eighteenth IEEE Symposium on Mass Storage System, 225–236 (2000).

Guertin, S.

S. Guertin, “Single-Event Upset Test Results for the Xilnx XQ1701L PROM,” IEEE Radiation Effects Data Workshop, pp. 14–21 (1999) http://radnet.jpl.nasa.gov/reports/1/ReportFiles/Xilinx_R1701L.pdf.

Hisaka, M.

M. Hisaka, H. Ishitobi, and S. Kawata, “Three dimensional optical recording with the ferroelectric domain reversal in a Ce-doped SBN:75 crystal: experiment and calculation,” Proc. SPIE 3740, 109–112 (1999).

Hunter, S.

Hutchings, D. C.

D. C. Hutchings, “Kramers-Kronig relations in nonlinear optics,” Opt. Quantum Electron. 24.1–30 (1992).
[Crossref]

Ishitobi, H.

M. Hisaka, H. Ishitobi, and S. Kawata, “Three dimensional optical recording with the ferroelectric domain reversal in a Ce-doped SBN:75 crystal: experiment and calculation,” Proc. SPIE 3740, 109–112 (1999).

Kawata, S.

M. Hisaka, H. Ishitobi, and S. Kawata, “Three dimensional optical recording with the ferroelectric domain reversal in a Ce-doped SBN:75 crystal: experiment and calculation,” Proc. SPIE 3740, 109–112 (1999).

S. Kawata, “Three-dimensional Digital Optical Data-storage with Photorefractive Crystals,” Proc. SPIE 3470, 56–63, (1998).
[Crossref]

A. Toriumi and S. Kawata, “Reflection confocal microscope readout system for three-dimensional photochromic optical data storage,” Opt. Lett.23, (1998).
[Crossref]

Malacara, D.

D. Malacara, “Optical Shop Testing,” Wiley series in pure and applied optics, 2nd edition.

Miller, T.

T. D. Milster, Y. Zhang, J. Butz, T. Miller, and E. P. Walker, “Volumetric Bit-Wise Memories, ” NASA earth science technology conference (2002).

Milster, T. D.

T. D. Milster, Y. Zhang, C. D. Pinto, and E. P. Walker, “A Volumetric Memory Device based on Photo-Chromatic Compounds,” NASA earth science technology conference (2001).

T. D. Milster, Y. Zhang, J. Butz, T. Miller, and E. P. Walker, “Volumetric Bit-Wise Memories, ” NASA earth science technology conference (2002).

T. D. Milster, “Semi-kinematic rails for construction of optical test stands”. SPIE Annual Meeting, San Diego, Aug. 2 (2001).

Miyahira, T.

T. Miyahira, “Summary of SEE test results from BNL heavy ion test,” http://radnet.jpl.nasa.gov/reports/1/ReportFiles/9902bnl.PDF.

T. Miyahira “Initial SEE Tests of SanDisk Flash Memory,” http://radnet.jpl.nasa.gov/reports/1/ReportFiles/078-SanDisk2.PDF.

Pinto, C. D.

T. D. Milster, Y. Zhang, C. D. Pinto, and E. P. Walker, “A Volumetric Memory Device based on Photo-Chromatic Compounds,” NASA earth science technology conference (2001).

Rentzepis, P. M.

H. Zhang, E. P. Walker, W. Feng, Y. Zhang, A. S. Dvornikov, S. Esener, and P. M. Rentzepis, “Multi-layer optical data storage based on two-photon recordable fluorescent disk media,” Eighteenth IEEE Symposium on Mass Storage System, 225–236 (2000).

Scheick, L.

L. Scheick, “SEE measurement at Brookhaven National Laboratory for the SRAMs: WMS128K8 128*8, MT5C2568 32K*8, MT5C2564 64K*4,” http://radnet.jpl.nasa.gov/reports/1/ReportFiles/SRAMS.PDF.

Swift, G.

G. Swift “In-Flight Observations of Multiple-Bit Upset in DRAMs” http://radnet.jpl.nasa.gov/reports/1/ReportFiles/CassDRAM.pdf.

Toriumi, A.

A. Toriumi and S. Kawata, “Reflection confocal microscope readout system for three-dimensional photochromic optical data storage,” Opt. Lett.23, (1998).
[Crossref]

Van Stryland, E. W.

E. W. Van Stryland, “Characterization of nonlinear optical absorption and refraction,” Prog. Crys. Grow. And Chac. 27, 279–311 (1993).
[Crossref]

Walker, E. P.

E. P. Walker, “Servo error signal generation for two-photon-recorded monolithic multilayer optical data storage,”. Proc. SPIE 4090179–184, (2000).
[Crossref]

T. D. Milster, Y. Zhang, C. D. Pinto, and E. P. Walker, “A Volumetric Memory Device based on Photo-Chromatic Compounds,” NASA earth science technology conference (2001).

H. Zhang, E. P. Walker, W. Feng, Y. Zhang, A. S. Dvornikov, S. Esener, and P. M. Rentzepis, “Multi-layer optical data storage based on two-photon recordable fluorescent disk media,” Eighteenth IEEE Symposium on Mass Storage System, 225–236 (2000).

T. D. Milster, Y. Zhang, J. Butz, T. Miller, and E. P. Walker, “Volumetric Bit-Wise Memories, ” NASA earth science technology conference (2002).

Zhang, H.

H. Zhang, “Single-beam two-photon-recorded monolithic multi-layer optical disks,” Proc. SPIE 4090, 174–178 (2000).
[Crossref]

H. Zhang, E. P. Walker, W. Feng, Y. Zhang, A. S. Dvornikov, S. Esener, and P. M. Rentzepis, “Multi-layer optical data storage based on two-photon recordable fluorescent disk media,” Eighteenth IEEE Symposium on Mass Storage System, 225–236 (2000).

Zhang, Y.

H. Zhang, E. P. Walker, W. Feng, Y. Zhang, A. S. Dvornikov, S. Esener, and P. M. Rentzepis, “Multi-layer optical data storage based on two-photon recordable fluorescent disk media,” Eighteenth IEEE Symposium on Mass Storage System, 225–236 (2000).

T. D. Milster, Y. Zhang, C. D. Pinto, and E. P. Walker, “A Volumetric Memory Device based on Photo-Chromatic Compounds,” NASA earth science technology conference (2001).

T. D. Milster, Y. Zhang, J. Butz, T. Miller, and E. P. Walker, “Volumetric Bit-Wise Memories, ” NASA earth science technology conference (2002).

Appl. Opt. (1)

Opt. Quantum Electron. (1)

D. C. Hutchings, “Kramers-Kronig relations in nonlinear optics,” Opt. Quantum Electron. 24.1–30 (1992).
[Crossref]

Proc. SPIE (4)

H. Zhang, “Single-beam two-photon-recorded monolithic multi-layer optical disks,” Proc. SPIE 4090, 174–178 (2000).
[Crossref]

S. Kawata, “Three-dimensional Digital Optical Data-storage with Photorefractive Crystals,” Proc. SPIE 3470, 56–63, (1998).
[Crossref]

M. Hisaka, H. Ishitobi, and S. Kawata, “Three dimensional optical recording with the ferroelectric domain reversal in a Ce-doped SBN:75 crystal: experiment and calculation,” Proc. SPIE 3740, 109–112 (1999).

E. P. Walker, “Servo error signal generation for two-photon-recorded monolithic multilayer optical data storage,”. Proc. SPIE 4090179–184, (2000).
[Crossref]

Prog. Crys. Grow. And Chac. (1)

E. W. Van Stryland, “Characterization of nonlinear optical absorption and refraction,” Prog. Crys. Grow. And Chac. 27, 279–311 (1993).
[Crossref]

Other (15)

T. D. Milster, “Semi-kinematic rails for construction of optical test stands”. SPIE Annual Meeting, San Diego, Aug. 2 (2001).

A. Toriumi and S. Kawata, “Reflection confocal microscope readout system for three-dimensional photochromic optical data storage,” Opt. Lett.23, (1998).
[Crossref]

T. D. Milster, Y. Zhang, J. Butz, T. Miller, and E. P. Walker, “Volumetric Bit-Wise Memories, ” NASA earth science technology conference (2002).

T. D. Milster, Y. Zhang, C. D. Pinto, and E. P. Walker, “A Volumetric Memory Device based on Photo-Chromatic Compounds,” NASA earth science technology conference (2001).

For the detailed information of Arrhenius model and the failure rate, http://www.vishay.com/docs/rect_reliability.pdf.

D. Malacara, “Optical Shop Testing,” Wiley series in pure and applied optics, 2nd edition.

J. Barth, “Ionizing Radiation Environment Concerns,” conference of single event effect criticality analysis, http://radhome.gsfc.nasa.gov/radhome/papers/seeca3.htm.

T. Miyahira “Initial SEE Tests of SanDisk Flash Memory,” http://radnet.jpl.nasa.gov/reports/1/ReportFiles/078-SanDisk2.PDF.

J. Coss, “Device SEE Susceptibility Update: 1996–1998,” http://radnet.jpl.nasa.gov/reports/1/ReportFiles/Update.PDF.

T. Miyahira, “Summary of SEE test results from BNL heavy ion test,” http://radnet.jpl.nasa.gov/reports/1/ReportFiles/9902bnl.PDF.

For more information of calculating penetration depth, http://tvdg10.phy.bnl.gov/LETCalc.html.

S. Guertin, “Single-Event Upset Test Results for the Xilnx XQ1701L PROM,” IEEE Radiation Effects Data Workshop, pp. 14–21 (1999) http://radnet.jpl.nasa.gov/reports/1/ReportFiles/Xilinx_R1701L.pdf.

L. Scheick, “SEE measurement at Brookhaven National Laboratory for the SRAMs: WMS128K8 128*8, MT5C2568 32K*8, MT5C2564 64K*4,” http://radnet.jpl.nasa.gov/reports/1/ReportFiles/SRAMS.PDF.

G. Swift “In-Flight Observations of Multiple-Bit Upset in DRAMs” http://radnet.jpl.nasa.gov/reports/1/ReportFiles/CassDRAM.pdf.

H. Zhang, E. P. Walker, W. Feng, Y. Zhang, A. S. Dvornikov, S. Esener, and P. M. Rentzepis, “Multi-layer optical data storage based on two-photon recordable fluorescent disk media,” Eighteenth IEEE Symposium on Mass Storage System, 225–236 (2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

A physical description of two-photon absorption. (a) Energy-level diagram and molecular structure of unwritten and written forms, showing fluorescence (b) absorption spectra and fluorescence spectrum of the unwritten and written forms of the material.

Fig. 2.
Fig. 2.

The schematic description of the Arizona Readout Test Stand (ARTS) dynamic test stand. The optical components are mounted on a semi-kinematic rail structure. A knife-edge prism is used to split the fluorescence and the difference between the two signals is used as a track error signal (TES).

Fig. 3.
Fig. 3.

(a) The read out signal from ARTS displayed on a oscilloscope; (b) the read out signal from ARTS displayed on a spectrum analyzer. The resolution bandwidth is 3 kHz, the video bandwidth is 300 Hz and the CNR is 37 dB.

Fig. 4.
Fig. 4.

(a) CCD image of fluorescent bits before heating. (b) CCD image of fluorescent bits after heating. No apparent change is observed compared to (a).

Fig. 5.
Fig. 5.

(a) Time domain readout signal before heating exhibits a straight baseline and large signal amplitude. (b) Time domain readout signal after heating exhibits a strongly curved baseline, without a significant reduction in signal amplitude.

Fig. 6.
Fig. 6.

(a) Ronchi test interferogram of the disk front surface before heating. Straight lines indicate a relatively flat surface. (b) Ronchi test interferogram of the disk surface after heating. Complex line patterns indicate a deformed surface.

Tables (4)

Tables Icon

Table 1. The percentage of disks failed versus temperature and heating period

Tables Icon

Table 2. Test results of the photo-chromic disks after they are exposed to heavy ion radiation.

Tables Icon

Table 3. Test results of the photo-chromic disks after they are exposed to proton radiation.

Tables Icon

Table 4. Minimal thickness for shielding metal when the proton energy is 60 Mev

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ = Sum of failures Σ ( Quantity × Time to failure ) 1 hours .
λ ( T 2 ) = λ ( T 1 ) × exp [ ( E A K ) × ( 1 T 1 1 T 2 ) ] .

Metrics