Abstract

We report on the theory and use of pre-amplification to enhance the measurement range of a spontaneous Brillouin intensity based distributed fiber-optic sensor. One factor that limits temperature resolution is receiver sensitivity, which degrades for long range sensors. Using optical preamplification before photodetection in a 23km sensor improved the signal-to-noise by approximately 17dB using a 20MHz detector. The major source of noise was amplified spontaneous emission beat noise.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. De Souza, G. P. Lees, P.C. Wait, and T. P. Newson, “A diode-pumped Landau-Placzek based distributed temperature sensor utilising an all-fibre Mach-Zehnder interferometer,” Electron. lett. 33, 2174–2196, (1996).
    [Crossref]
  2. M. Gold, “Design of long-range single mode OTDR,” J. Lightwave. Technol. 3, 38–43, (1985).
    [Crossref]
  3. E. Desurvire, Erbium-doped fiber amplifiers, (John Wiley & sons,1994) 207–305.
  4. R. M. Howard and R. D. Jeffery, “On the noise of high-transimpedance amplifiers,” Opt. Quantum Electron. 19, 123–129, (1987).
    [Crossref]
  5. P. Morkel and R. I. Laming, “Theoretical modelling of erbium-doped fiber amplifiers with excited-state absorption,” Opt. Lett. 14, 1062–1064, (1989).
    [Crossref] [PubMed]
  6. K. De Souza and T. P. Newson, “Improvement of signal-to-noise capabilities of a distributed temperature sensor using optical preamplification,” Meas. Sci. Technol.,  12, 952–957, (2001).
  7. K. De Souza, P.C. Wait, and T. P. Newson, “A double-pass configured Mach-Zehnder interferometric optical filter for distributed sensing,” Electron. lett. 33, 2148–2150, (1997).
    [Crossref]
  8. Y.T. Cho, M. N. Alahabi, M. J. Gunning, and T. P. Newson, “50km single-ended spontaneous Brillouin-based distributed temperature sensor exploiting pulsed Raman amplification,” Opt. Lett. 28, 1651–1653, (2003).
    [Crossref] [PubMed]

2003 (1)

2001 (1)

K. De Souza and T. P. Newson, “Improvement of signal-to-noise capabilities of a distributed temperature sensor using optical preamplification,” Meas. Sci. Technol.,  12, 952–957, (2001).

1997 (1)

K. De Souza, P.C. Wait, and T. P. Newson, “A double-pass configured Mach-Zehnder interferometric optical filter for distributed sensing,” Electron. lett. 33, 2148–2150, (1997).
[Crossref]

1996 (1)

K. De Souza, G. P. Lees, P.C. Wait, and T. P. Newson, “A diode-pumped Landau-Placzek based distributed temperature sensor utilising an all-fibre Mach-Zehnder interferometer,” Electron. lett. 33, 2174–2196, (1996).
[Crossref]

1989 (1)

1987 (1)

R. M. Howard and R. D. Jeffery, “On the noise of high-transimpedance amplifiers,” Opt. Quantum Electron. 19, 123–129, (1987).
[Crossref]

1985 (1)

M. Gold, “Design of long-range single mode OTDR,” J. Lightwave. Technol. 3, 38–43, (1985).
[Crossref]

Alahabi, M. N.

Cho, Y.T.

De Souza, K.

K. De Souza and T. P. Newson, “Improvement of signal-to-noise capabilities of a distributed temperature sensor using optical preamplification,” Meas. Sci. Technol.,  12, 952–957, (2001).

K. De Souza, P.C. Wait, and T. P. Newson, “A double-pass configured Mach-Zehnder interferometric optical filter for distributed sensing,” Electron. lett. 33, 2148–2150, (1997).
[Crossref]

K. De Souza, G. P. Lees, P.C. Wait, and T. P. Newson, “A diode-pumped Landau-Placzek based distributed temperature sensor utilising an all-fibre Mach-Zehnder interferometer,” Electron. lett. 33, 2174–2196, (1996).
[Crossref]

Desurvire, E.

E. Desurvire, Erbium-doped fiber amplifiers, (John Wiley & sons,1994) 207–305.

Gold, M.

M. Gold, “Design of long-range single mode OTDR,” J. Lightwave. Technol. 3, 38–43, (1985).
[Crossref]

Gunning, M. J.

Howard, R. M.

R. M. Howard and R. D. Jeffery, “On the noise of high-transimpedance amplifiers,” Opt. Quantum Electron. 19, 123–129, (1987).
[Crossref]

Jeffery, R. D.

R. M. Howard and R. D. Jeffery, “On the noise of high-transimpedance amplifiers,” Opt. Quantum Electron. 19, 123–129, (1987).
[Crossref]

Laming, R. I.

Lees, G. P.

K. De Souza, G. P. Lees, P.C. Wait, and T. P. Newson, “A diode-pumped Landau-Placzek based distributed temperature sensor utilising an all-fibre Mach-Zehnder interferometer,” Electron. lett. 33, 2174–2196, (1996).
[Crossref]

Morkel, P.

Newson, T. P.

Y.T. Cho, M. N. Alahabi, M. J. Gunning, and T. P. Newson, “50km single-ended spontaneous Brillouin-based distributed temperature sensor exploiting pulsed Raman amplification,” Opt. Lett. 28, 1651–1653, (2003).
[Crossref] [PubMed]

K. De Souza and T. P. Newson, “Improvement of signal-to-noise capabilities of a distributed temperature sensor using optical preamplification,” Meas. Sci. Technol.,  12, 952–957, (2001).

K. De Souza, P.C. Wait, and T. P. Newson, “A double-pass configured Mach-Zehnder interferometric optical filter for distributed sensing,” Electron. lett. 33, 2148–2150, (1997).
[Crossref]

K. De Souza, G. P. Lees, P.C. Wait, and T. P. Newson, “A diode-pumped Landau-Placzek based distributed temperature sensor utilising an all-fibre Mach-Zehnder interferometer,” Electron. lett. 33, 2174–2196, (1996).
[Crossref]

Wait, P.C.

K. De Souza, P.C. Wait, and T. P. Newson, “A double-pass configured Mach-Zehnder interferometric optical filter for distributed sensing,” Electron. lett. 33, 2148–2150, (1997).
[Crossref]

K. De Souza, G. P. Lees, P.C. Wait, and T. P. Newson, “A diode-pumped Landau-Placzek based distributed temperature sensor utilising an all-fibre Mach-Zehnder interferometer,” Electron. lett. 33, 2174–2196, (1996).
[Crossref]

Electron. lett. (2)

K. De Souza, G. P. Lees, P.C. Wait, and T. P. Newson, “A diode-pumped Landau-Placzek based distributed temperature sensor utilising an all-fibre Mach-Zehnder interferometer,” Electron. lett. 33, 2174–2196, (1996).
[Crossref]

K. De Souza, P.C. Wait, and T. P. Newson, “A double-pass configured Mach-Zehnder interferometric optical filter for distributed sensing,” Electron. lett. 33, 2148–2150, (1997).
[Crossref]

J. Lightwave. Technol. (1)

M. Gold, “Design of long-range single mode OTDR,” J. Lightwave. Technol. 3, 38–43, (1985).
[Crossref]

Meas. Sci. Technol. (1)

K. De Souza and T. P. Newson, “Improvement of signal-to-noise capabilities of a distributed temperature sensor using optical preamplification,” Meas. Sci. Technol.,  12, 952–957, (2001).

Opt. Lett. (2)

Opt. Quantum Electron. (1)

R. M. Howard and R. D. Jeffery, “On the noise of high-transimpedance amplifiers,” Opt. Quantum Electron. 19, 123–129, (1987).
[Crossref]

Other (1)

E. Desurvire, Erbium-doped fiber amplifiers, (John Wiley & sons,1994) 207–305.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Plots showing: (a) the unamplified and optically amplified signals and the variation of RMS noise voltages of photodiode noise, transimpedance noise and EDFA noise with receiver bandwidth. (b) Corresponding variation of optical signal-to-noise ratio with and without optical preamplification. An improvement of 17dB is shown for a 20MHz receiver. G=27dB, N=40960 and Bo=47GHz.

Fig. 2.
Fig. 2.

Schematic experimental set up and preamplifier configuration.

Fig. 3.
Fig. 3.

(a) Unamplified and (b) 27dB amplified spontaneous Brillouin signal over 23km. Averages=8192.

Fig. 4.
Fig. 4.

(a) unamplified and (b) 27dB amplified spontaneous Brillouin signal at far end of fibre sensor. Averages=40960.

Tables (1)

Tables Icon

Table 1. Description of various noise sources and their corresponding mean square currents

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SNR o [ dB ] = 10 log [ V SIGNAL N ( Σ V n 2 ) ]

Metrics