Abstract

We report on the theory and use of pre-amplification to enhance the measurement range of a spontaneous Brillouin intensity based distributed fiber-optic sensor. One factor that limits temperature resolution is receiver sensitivity, which degrades for long range sensors. Using optical preamplification before photodetection in a 23km sensor improved the signal-to-noise by approximately 17dB using a 20MHz detector. The major source of noise was amplified spontaneous emission beat noise.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. De Souza, G. P. Lees, P.C. Wait, and T. P. Newson, �?? A diode-pumped Landau-Placzek based distributed temperature sensor utilising an all-fibre Mach-Zehnder interferometer,�?? Electron. lett. 33, 2174 -2196, (1996)
    [CrossRef]
  2. M. Gold, �??Design of long-range single mode OTDR,�?? J. Lightwave. Technol. 3, 38-43, (1985)
    [CrossRef]
  3. E. Desurvire, Erbium-doped fiber amplifiers, (John Wiley & sons, 1994) 207-305
  4. R. M. Howard, R. D. Jeffery, �?? On the noise of high-transimpedance amplifiers,�?? Opt. Quantum Electron. 19, 123-129, (1987)
    [CrossRef]
  5. P. Morkel, R. I. Laming, �??Theoretical modelling of erbium-doped fiber amplifiers with excited-state absorption,�?? Opt. Lett. 14, 1062-1064, (1989)
    [CrossRef] [PubMed]
  6. K. De Souza, T. P. Newson, �??Improvement of signal-to-noise capabilities of a distributed temperature sensor using optical preamplification,�?? Meas. Sci. Technol., 12, 952-957, (2001)
  7. K. De Souza, P.C. Wait and T. P. Newson, �??A double-pass configured Mach-Zehnder interferometric optical filter for distributed sensing,�?? Electron. lett. 33, 2148 -2150, (1997)
    [CrossRef]
  8. Y.T. Cho, M. N. Alahabi, M. J. Gunning and T. P. Newson, �??50km single-ended spontaneous Brillouin-based distributed temperature sensor exploiting pulsed Raman amplification,�?? Opt. Lett. 28, 1651-1653, (2003)
    [CrossRef] [PubMed]

Electron. lett. (2)

K. De Souza, G. P. Lees, P.C. Wait, and T. P. Newson, �?? A diode-pumped Landau-Placzek based distributed temperature sensor utilising an all-fibre Mach-Zehnder interferometer,�?? Electron. lett. 33, 2174 -2196, (1996)
[CrossRef]

K. De Souza, P.C. Wait and T. P. Newson, �??A double-pass configured Mach-Zehnder interferometric optical filter for distributed sensing,�?? Electron. lett. 33, 2148 -2150, (1997)
[CrossRef]

J. Lightwave. Technol. (1)

M. Gold, �??Design of long-range single mode OTDR,�?? J. Lightwave. Technol. 3, 38-43, (1985)
[CrossRef]

Meas. Sci. Technol. (1)

K. De Souza, T. P. Newson, �??Improvement of signal-to-noise capabilities of a distributed temperature sensor using optical preamplification,�?? Meas. Sci. Technol., 12, 952-957, (2001)

Opt. Lett. (2)

Opt. Quantum Electron (1)

R. M. Howard, R. D. Jeffery, �?? On the noise of high-transimpedance amplifiers,�?? Opt. Quantum Electron. 19, 123-129, (1987)
[CrossRef]

Other (1)

E. Desurvire, Erbium-doped fiber amplifiers, (John Wiley & sons, 1994) 207-305

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Plots showing: (a) the unamplified and optically amplified signals and the variation of RMS noise voltages of photodiode noise, transimpedance noise and EDFA noise with receiver bandwidth. (b) Corresponding variation of optical signal-to-noise ratio with and without optical preamplification. An improvement of 17dB is shown for a 20MHz receiver. G=27dB, N=40960 and Bo=47GHz.

Fig. 2.
Fig. 2.

Schematic experimental set up and preamplifier configuration.

Fig. 3.
Fig. 3.

(a) Unamplified and (b) 27dB amplified spontaneous Brillouin signal over 23km. Averages=8192.

Fig. 4.
Fig. 4.

(a) unamplified and (b) 27dB amplified spontaneous Brillouin signal at far end of fibre sensor. Averages=40960.

Tables (1)

Tables Icon

Table 1. Description of various noise sources and their corresponding mean square currents

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SNR o [ dB ] = 10 log [ V SIGNAL N ( Σ V n 2 ) ]

Metrics