Abstract

All-optical wavelength-selective single- and dual-channel wavelength conversion and tuning has been demonstrated in a periodically poled Ti:LiNbO3 waveguide that has two second-harmonic phase-matching peaks by cascaded sum and difference frequency generation (cSFG/DFG). The wavelength conversion efficiency was measured to be -7 dB with coupled pump power of 233 mW.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Schiffini, A. Paoletti, D. Caccioli, P. Minzioni, P. Griggio, G. Lorenzetto, S. Cascelli, M. Guglielmucci, F. Materia, G. Tosi-Beleffi, H. Suche, Y. Lee, V. Quiring, and W. Sohler, �??Field demonstration of all optical in line wavelength conversion in a WDM 40 Gbit/s dispersion managed link using a polarization insensitive Ti:PPLN converter,�?? OFC (Optical Society of America, Washington, D.C., 2003) 291-293.
  2. K. Inoue, �??Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights,�?? IEEE Photon. Technol. Lett. 6, 1451-1453 (1994).
    [CrossRef]
  3. F. Ratovelomanana, N. Vodjdani, A. Enard, G. Glastre, D. Rondi, R. Blondeau, C. Joergensen, T. Durhuus, B. Mikkelsen, K. E. Stubkjaer, A. Jourdan, and G. Soulage, �??An all-optical wavelength-converter with semiconductor optical amplifiers monolithically integrated in a asymmetric passive Mach-Zehnder interferometer,�?? IEEE Photon. Technol. Lett. 6, 992-994 (1994).
  4. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, �??1.5- µm-Band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,�?? IEEE Photon. Technol. Lett. 11, 653-655 (1999).
    [CrossRef]
  5. G. Schreiber, H. Suche, Y. L. Lee, W. Grundk¨otter, V. Quiring, R. Ricken, and W. Sohler, �??Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping,�?? Appl. Phys. B 73, 501-504 (2001).
    [CrossRef]
  6. A. Chowdhury, S. Hagness, and L. McCaughan, �??Simultaneous optical wavelength interchange with a twodimensional second-order nonlinear photonic crystal,�?? Opt. Lett. 25, 832-834 (2000).
    [CrossRef]
  7. A. Chowdhury, C. Staus, B. Boland, T. Kuech, and L. McCaughan, �??Experimental demonstration of 1535-1555-nm simultaneous optical wavelength interchange with a nonlinear photonic crystal,�?? Opt. Lett. 26, 1353-1355 (2001).
    [CrossRef]
  8. Y. H. Min, J. H. Lee, Y. L. Lee, W. Grundk¨oter, V. Quiring, and W. Sohler, �??Tunable all-optical wavelength conversion of 5-ps pulses by cascaded sum- and difference frequency generation (cSFG/DFG) in a Ti:PPNL waveguide,�?? OFC (Optical Society of America, Washington D.C., 2003) 767-768.
  9. Y. H. Min, W. Grundk¨oter, J. H. Lee, Y. L. Lee, V. Quiring, and W. Sohler, �??Efficient, all-optical wavelength conversion and tuning of ps-pulses in a Ti:PPLN channel waveguide,�?? Proc. Conference Lasers and Electro-Optics (CLEO/Europe �??03), Munich/Germany, paper CE5-1-THU.
  10. R. Regener, andW. Sohler, �??Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,�?? Appl. Phys. B 36, 143-147 (1985).
    [CrossRef]
  11. S. Helmfrid, and G. Arvidsson, �??Influence of randomly varying domain lengths and nonuniform effective index on second-harmonic generation in quasi-phase-matching waveguides,�?? J. Opt. Soc. Am. B 8, 797-804 (1991).
    [CrossRef]
  12. M. H. Chou, K. R. Parameswaran, and M. M. Fejer, �??Multi-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides,�?? Opt. Lett. 24, 1157-1159 (1999).
    [CrossRef]
  13. M. Asobe, O. Tadanage, H. Miyazawa, Y. Nishida, and H. Suzuki, �??Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure,�?? Opt. Lett. 28, 558-560 (2003).
    [CrossRef] [PubMed]
  14. Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, D.-K. Ko, and J. Lee, �??Broadening of the second-harmonic phase-matching bandwidth in a temperature gradient controlled periodically poled Ti:LiNbO3 channel waveguide,�?? Opt. Express 11, 2813-2816 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2813">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2813</a>.
    [CrossRef] [PubMed]
  15. Y. L. Lee, C. Jung, Y.-C. Noh, I. W. Choi, D.-K. Ko, J. Lee, H. Y. Lee, and H. Suche, �??Wavelength selective single and dual-channel dropping in a periodically poled Ti:LiNbO3 waveguide,�?? Opt. Express 12, 701-707 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-701">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-701</a>.
    [CrossRef] [PubMed]
  16. B. Chen and C. Xu, �??Analysis of novel cascaded �?(2) (SFG+DFG) wavelength conversions in quasi- phasematched waveguides,�?? IEEE J. Quantum. Electron. 40, 256-261 (2004).
    [CrossRef]

Appl. Phys. B (2)

R. Regener, andW. Sohler, �??Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,�?? Appl. Phys. B 36, 143-147 (1985).
[CrossRef]

G. Schreiber, H. Suche, Y. L. Lee, W. Grundk¨otter, V. Quiring, R. Ricken, and W. Sohler, �??Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping,�?? Appl. Phys. B 73, 501-504 (2001).
[CrossRef]

IEEE J. Quantum. Electron. (1)

B. Chen and C. Xu, �??Analysis of novel cascaded �?(2) (SFG+DFG) wavelength conversions in quasi- phasematched waveguides,�?? IEEE J. Quantum. Electron. 40, 256-261 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

K. Inoue, �??Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights,�?? IEEE Photon. Technol. Lett. 6, 1451-1453 (1994).
[CrossRef]

F. Ratovelomanana, N. Vodjdani, A. Enard, G. Glastre, D. Rondi, R. Blondeau, C. Joergensen, T. Durhuus, B. Mikkelsen, K. E. Stubkjaer, A. Jourdan, and G. Soulage, �??An all-optical wavelength-converter with semiconductor optical amplifiers monolithically integrated in a asymmetric passive Mach-Zehnder interferometer,�?? IEEE Photon. Technol. Lett. 6, 992-994 (1994).

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, �??1.5- µm-Band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,�?? IEEE Photon. Technol. Lett. 11, 653-655 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

OFC (2)

A. Schiffini, A. Paoletti, D. Caccioli, P. Minzioni, P. Griggio, G. Lorenzetto, S. Cascelli, M. Guglielmucci, F. Materia, G. Tosi-Beleffi, H. Suche, Y. Lee, V. Quiring, and W. Sohler, �??Field demonstration of all optical in line wavelength conversion in a WDM 40 Gbit/s dispersion managed link using a polarization insensitive Ti:PPLN converter,�?? OFC (Optical Society of America, Washington, D.C., 2003) 291-293.

Y. H. Min, J. H. Lee, Y. L. Lee, W. Grundk¨oter, V. Quiring, and W. Sohler, �??Tunable all-optical wavelength conversion of 5-ps pulses by cascaded sum- and difference frequency generation (cSFG/DFG) in a Ti:PPNL waveguide,�?? OFC (Optical Society of America, Washington D.C., 2003) 767-768.

Opt. Express (2)

Opt. Lett. (4)

Proc. CLEO/Europe (1)

Y. H. Min, W. Grundk¨oter, J. H. Lee, Y. L. Lee, V. Quiring, and W. Sohler, �??Efficient, all-optical wavelength conversion and tuning of ps-pulses in a Ti:PPLN channel waveguide,�?? Proc. Conference Lasers and Electro-Optics (CLEO/Europe �??03), Munich/Germany, paper CE5-1-THU.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

SHG curve at room temperature. The conversion efficiency of the two high peaks are 319%/W and 291%/W, respectively.

Fig. 2.
Fig. 2.

Experimental setup to demonstrate all-optical channel-selective wavelength conversion by cSFG/DFG; ECL: extended cavity semiconductor laser, DFB: distributed feedback laser, HP-EDFA: high power erbium-doped fiber amplifer, OSA: optical spectrum analyzer, (PC1, PC2, PC3, PC4): polarization controller.

Fig. 3.
Fig. 3.

Phase-matching characteristics for channel dropping by SFG. Vertical arrow lines indicate energy conservations.

Fig. 4.
Fig. 4.

Optical spectra of wavelength conversion on the basis of the cSFG/DFG process (in the case of signal 1 conversion). In our case, the spacing between signal 1 and signal 2 is greater than 0.3 nm where the cross talk between channels becomes significant.

Fig. 5.
Fig. 5.

Optical spectra of wavelength conversion based on cSFG/DFG process (in the case of signal 2 conversion).

Fig. 6.
Fig. 6.

Optical spectra of wavelength conversion based on cSFG/DFG process (in the case of the conversion of both signals).

Metrics